One Pot Solvent Free Synthesis of Curcumin and Analogues Using Vitamin B1 as an Efficient Catalyst

Mahesh Shioorkar

Department of Chemistry, Vivekanand College, Aurangabad (MS) INDIA

Abstract

A highly efficient, solvent free and simple single protocol is described for the synthesis of curcumin and analogues by grinding method using Thiamine hydrochloride (Vitamin B_1) and Calcium oxide as reagent. Two moles of aromatic substituted aldehydes with acetylacetone presented as starting component. This environmentally benign methodology may prove to be valuable alternatives to traditional curcumin synthesis methods.

Keywords: Curcumin, synthesis of turmeric, Vitamin B₁, thiamine hydrochloride catalyzed, green reaction

Date of Submission: 29-06-2021

ission: 29-06-2021 Date of acceptance: 13-07-2021

I. INTRODUCTION

Curcumin is natural product and isolated from plant *Curcuma longa*, founds with two isomers demothoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) as yellow colour mixture, collectively called as Curcuminoids. [1]Modern science validate that Curcumin inhibit induction of nitric oxide [2], 5-Chloro curcumin exhibits anti-oxidant[3] properties, due to presence of phenolic unit curcumin exhibits anti-oxidant properties in water [4]. Curcumin found to be excellent inhibitor for various type of cancer[5] such as gastrointestinal cancer [6],breast cancer [7],pancreatic cancer [8],lung cancer [9],blood cancer properties[10], anti-cervical and anti-oral cancer. [11,12] Curcumin, also reported for possessing anti-inflammatory[13], anti-bacterial[14], anti-diabetic[15], anti-Alzheimer [16](AD) and anti-HIV[17] properties. Curcumin found useful natural product for treatment of psychiatric disorder like depression [18], many other studies underline pharmacokinetic importance of curcumin. [19, 20]

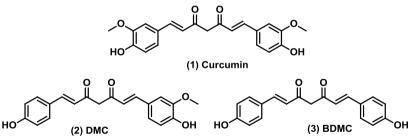
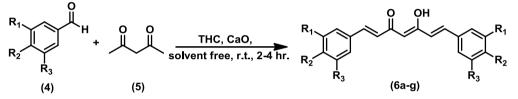


Figure 1.1 Structure of Curcuminoids, (2) Demthoxycurcumin (DMC) and (3) Bisdemethoxy curcumin are differ from Curcumin (1) by absence of methoxy (-OMe) group.

Bioavailability of curcumin [21] is major problem, which prevent curcumin to establish as super drug. Many attempts were made, by synthesizing of curcumin and its analogues in the laboratory, in search of novel pharmacokinetic properties. Majority of such methods involving one mole of Acetylacetone and two moles of vanillin along with suitable base. Conventional synthesis of Curcumin required longer time. [22]Success of the reaction depends upon condensation of terminal methyl groups with aromatic aldehydes. Due to presences of more active methylene moiety at centre, it reacts first and reduce yield of product. Practically, curcumin analogues with non-hydroxyl aromatic aldehydes do react to obtained satisfactory yield. But during the reaction of synthesis of Curcumin or bis-demethoxycurcumin (BDMC) yield of product fall down. One way is to protect hydroxyl groups followed by Claisen-Schmidt reaction. Another way is modification in reaction condition by trial and error basis.

Experimental

All the compounds used in synthesis were of analytical grade; the melting points of the compounds were determined in open head capillary and are uncorrected. The reaction was carried out without further


purification of solvent or chemicals. H^1 NMR spectra were recorded on a DRX-300 Bruker FT-NMR spectrophotometer in CDCl₃/DMSO-*d6* as solvent using TMS as internal standard. Chemical shifts (δ) are reported in ppm. The IR spectra were recorded using Perkin Elmer spectrometer (KBr plates). All the compounds were checked for purity by thin layer chromatography (TLC). Mobile phase was used Methanol 3% in DCM. TLC visualization was done with UV chamber and other usual spray reagents.

General procedure

In a mortar, aromatic aldehyde (0.02 mol), acetylacetone (0.01 mol, 1gm) and calcium oxide (0.01 mol, 560mg) was added, Thiamine hydrochloride (10mol%, 265mg) was added in single portion, reaction contains was pestle for next few 30 minutes vigorously and further allowed to stand at room temperature forappropriate time (2 hrs.-4 hrs., TLC check) with occasional stirring to offer product. After completion of reaction (TLC) check, distilled water was added to reaction mixture. Yellow mass filter out washed with water and light petroleum repeatedly, dried under high vacuum to offered desired product. During optimization of amount of THC and metal oxide, products were separated by column chromatography using silica gel (60-120 mesh), mobile phase was Methanol (2%) in Chloroform.

Series of sets of reaction were performed to optimized reaction condition. Present work is extended part of our previously reported curcumin and analogues synthesis. [23]

Reaction Scheme1: Derivative preparation of Curcumin analogues using THC, CaO as catalyst and without solvent

Spectral data of representativecompound:

(1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one(6a)

IR (KBr): 3542, 1635, 1622, 1046, 982 cm⁻¹, ¹H-NMR (DMSO-*d*6) δ 3.89 (s, 6H, -OCH₃), 6.12 (s, 1H, H-4), 6.73(d, 1H, H-7), 6.75 (d, 2H, Ar), 6.86 (d, 1H, H-6), 7.12(d, 2H, Ar), 7.16(d, 1H, H-2), 7.27 (s, 2H, Ar), 7.65 (d, 1H, H-1), 9.75 (s, 2H, -OH), 10.11(s, 1H, enol -OH)

II. RESULTS AND DISCUSSIONS

In our previous report [23 (a)] we synthesized Curcumin analogues using Thiamine hydrochloride as catalyst and PEG as solvent. Vitamin B1 mainly reported in oxidative condensation reactions. Present attempted was to check possibility of THC as catalyst in curcumin synthesis; hence THC and room temperature condition were kept as fixed factors throughout optimization of reaction.

Two molecules of Vanillin and one molecule of acetylacetone, thiamine hydrochloride stirring as room temperature were selected as fixed parameters for model reaction. To minimize byproduct, cheating metal used. Our focus was on simple workup procedure at room temperature, without any catalyst. Model reaction was performed without any metal chelating agent to ensured need of chelating, when THC was introduced without metal obtained result was not satisfactory.

Calcium hydroxide, one of the meritorious substances for this reaction. As previous reports founds its ability to work as base as well as chelating agent (24), obtained yield was good. Calcium oxide (25) was reported with microwave irradiation techniques, which in fact expeditious method, but report was described to offers product after long 12 hours workup.

Sr. No.	THC: CaO	Yield (%) ^a
1)	5mol%:1eq.	13
2)	10mol%:1eq.	59
3)	15mol%:1eq.	63
4)	5mol%:50mol%.	
5)	10mol%:10mol%	Trace [#]
6)	15mol%:10mol%	

^aIsolated yield, [#] TLC check

Calcium oxide (1 eq.) and THC (15mol%) were found most productive and kept constant for further analogues synthesis of curcumin as shown in **Table 3**. It was found that –OCH₃, -Br, -F and methyl substituted benzaldehyde founds more productive. Whereas, Curcumin (6a), BDMC (6b) and other –OH containing curcumin (6d) analogues are less productive in nature. It was observed that –OH containing curcumin analogues are comparatively more water soluble and lost during workup [23].

Sr. No.	R ₁	R ₂	R ₃	Time in min.	Yield in % ^a	M.P. (°C) [23 (a)]*
6a	-OCH ₃	-OH	-H	240	63	179-180
6b	-H	-OH	-H	240	50	174-176
6c	-H	-OCH ₃	-H	90	67	162-163
6d	-H	-Br	-H	90	70	152-145
6e	-H	-OCOCH ₃	-H	90	45	171-173
6f	-H	-NO ₂	-H	300	13	152-153
6g	-H	-Cl	-H	240	46	150-151

	Table 3. Table showing	curcumin and	substituent's of ana	logue and their	r melting point.
--	------------------------	--------------	----------------------	-----------------	------------------

^a Isolated yield, * Literature reports.

Curcumin and analogues obtained as products were determined by Melting point and representative products were scan for IR and¹HNMR. Thus obtained results were compared with reported one and found satisfactory. [24,26]

III. CONCLUSIONS:

In conclusion, we describe environmentally benign, solvent free, cost effective, mild work-up methodology for the synthesis of curcumin and analogues. Aromatic aldehydes and acetyl acetone are easily available, thiamine hydrochloride and calcium oxide are cheap and non-hazardous, and stirring at room temperature and finally no acid or base workup enhance significant utility of present methodology.

REFERENCES

- K. R. Srinivasan, A chromatographic study of the curcuminoids in Curcuma longa, Journal of Pharmacy and Pharmacology, 1953, 5, 1, 448–457.
- S. Sreejayan, M. N. A. Rao, Nitric oxide Scavenging by Curcuminoids, Journal of Pharmacy and Pharmacology, 1997, Vol.49, No.1, pp.105-107.
- [3] Ahmed A Al-Amiery, Abdul Amir H. Kadhum, Hasan R.Obayes, Abu BakarMohamad, Synthesis and Antioxidant Activity of Novel 5-Chlorocurcumin, Complemented by Semiemperical Calculations, Bioinorganic Chemistry and Applications, 2013, Vol.2013, pp.1-7.
- [4] S. V. Jovanovic, C. W. Boone, S. Steenken, M. Trinoga, R. B. Kaskey, How curcumin works preferentially with water soluble antioxidants, Journal of American Chemical Society, 2001, Vol.123, No.13, pp.3064-3068.
- [5] A. Shehzad, J. Lee, Y. S. Lee, Curcumin in various cancers, BioFactors, 2013, Vol. 39, No. 1, pp. 56-68.
- [6] P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, B. B. Aggarawal, Curcumin and Cancer: An old-age disease with an ageold solution, Cancer Letters, 2008, Vol. 267, No.1, pp.133-164.
- [7] G. Yan, K. Graham, S. Lanza-Jacoby, Curcumin enhances the anticancer effects of trichostatin a breast cancer cells, Molecular Carcinogenesis, 2013, Vol.52, pp. 404-411.
- [8] S. Aggrarwal, M. W. Ndinguri, R. Solipuram, N. Wakamatsu, R. P. Hammer, D. Ingram, W. Hansel, [DLys⁶]-luteinizing hormone releasing hormone-curcumin conjugate inhibits pancreatic cancer cell growth in *vitro* and in *vivo*, International Journal of Cancer, 2011, Vol. 129, pp. 1611-1623.
- Y. Yamauchi, Y. Izumi, J. Yamamoto, H. Nomori, Coadministration of erlotinib and curcuminaugmentatively reduces cell viability in Lung cancer cells, Phytotherapy Research, 2014, Vol. 28, 5, pp.728-735.
- [10] Abo Bakr Abdel Shakor, Mona Atia, Ismail Ahmed Ismail, Ali Alshehri, Hesham El Rafaey,KatarzynaKwiatkowska, AndrzejSobota, Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramida accumulation, Biochimica et BiophysicaActa (BBA)- Molecular and Cell Biology of Lipids, 2014, Vol. 1841, No. 12, pp. 1672-1682.
- [11] A. B. Kunnumakkara, P. Anand, B. B. Aggrawal, Curcumin inhibits proliferation, invasion, angiogenisis and metastasis of different cancers through interaction with multiple cell signaling proteins, Cancer Letters, 2008, Vol.269, No.2, pp.199-225.
- [12] Hyun-Sang Jeon, Myung-Hun Jo, Heung-Joong Kim, Myoung-Hwa Lee, Sun-KyoungYu, Chun SungKim, Sook-Young Lee, Su-Gwan Kim, Hong Sung Chun, Euteum Park, Do Kyung Kim, Anticancer activities of diphenyldifluoroketone, a novel curcumin analog, on KB human oral cancer cells, Journal of the Korean Society for Applied Biological Chemistry, 2012, Vol. 55, No.4, pp.451-456.
- [13] Jurenka, J. S., Anti-inflammatory properties of Curcumin, a major constituent of Curcuma long: A review of prexlinical and clinical research, Alternative Medicin Review, 2009, Vol.14, 2, pp.141-153.
- [14] Wei Jin, Jing Wang, Tiansheng Zhu, Baoyu Yuan, Hongbin Ni, Jian Jiang, Handong Wang, Weigang Liang, Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats, **Inflammation Research**, 2014,Vol. 63, pp. 381-387.
- [15] Su-Hyun Mun, Dae-Ki Joung, Yong-Sik Kim, Ok-Hwa Kang, Sung-Bae Kim, Yun-SooSeo, Youn-Chul Kim, Dong-Sung Lee, Dong-Won Shin, Kee-Tae Kweon, Dong-Yeul Kwon, Synergistic antibacterial effects of curcumin against methicillin resistant *Staphylococcus aureus*, Phytomedicine, 2013, Vol. 20, pp. 714-718.

- [16] Ono, K., Hasegwa, K., Naiki, H., Yamada, M., Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro, Journal of Neuroscience research,2004, Vol. 75, 6, pp-742-750.
- [17] Zhihua Sui, Rafael Salto, Jia Li, Charles Craik, Palul R. Ortiz de Montellano, Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes, **Bioorganic and Medicinal Chemistry**, 1993, Vol.1, No.6, pp.415-422.
- [18] Kulkarni, S.K., Bhutani, M.K., Bishnoi, M., Antidepressant activity of Curcumin: involvenment of serotonin and dopamine system, Psychopharmacology, 2008, 201, pp.435-442.
- [19] M. M. Yallapu, P. K. B. Nagesh, M. Jaggi, S. C. Chauhan(2015) Therapeutic Applications of Curcumin, Nanoformulations, 17, 6, 1341-1356.
- [20] R. A. Petros, J. M. De Simone (2010) Strategies in the design of nanoparticles for therapeutic applications, Nature Review Drug Discovery, 9, 8, 615–27.
- [21] Prasad, S., Tyagi, A.K., Aggarwal, B.B., Recent development in delivery, bioavailability and metabolism of curcumin: the golden pigment from golden spice, **Cancer research and treatment**, 2014, 46, 1, pp-2-18.
- [22] Pabon, H. J. J., A synthesis of Curcumin and related compounds, Rec. Trav. Chim. Pays-Bas., 1964, 83, 379.
- [23] a) Shioorkar, M.G., Ubale, M.B, Synthesis of Curcumin and analogues using Thiamine hydrochloride as an efficient catalyst, International Journal of Chemistry, Pharmacy and Technology, 2016, 1, 1, pp. 28-35. b) Shioorkar, M.G., Ubale, M.B., Expenditious alum catalysed green methodology for the synthesis of substituted pyrazole curcumin analogues, Journal of Medicinal Chemistry and drug discovery, 2016, 2, 1, pp-74-81.c) Shioorkar, M.G., Ubale, M.B., Simple and efficient microwave PEG mediated synthesis of Pyrazole analogues of Curcumin, Der Pharma Chemica, 2015, 7, 2, pp-274-277.d) Shioorkar, M., Ubale, M., Potassium aluminium sulfate: green catalyst for synthesis of 1,3,5-substituted pyrazole, Heterocyclic letters, 2016, Vol.6, 2, pp-217-221.e) Shioorkar, M., Ubale, M., Simple and effective microwave assisted one pot synthesis of symmetrical curcumin analogues, Der ChemicaSinica, 2015, 6,4, pp-110-113.
- [24] Kulkarni, P.S., Kondhare, D.D., Varala, R., Zubaidha, P.K., Calcium hydroxide: An efficient and mild base one pot synthesis of curcumin and its analogues, ActaChimcaSlovaca, 2013, 6, 1, pp-150-156.
- [25] Elavarasan, S., Bhakiaraj, D., Elavarasan, T., Gopalakrishnan, M., An efficient green procedure of some fluorinated curcumin analogues catalyzed by calcium oxide under microwave irradiation and its antibacterial evaluation, Journal of Chemistry, 2013, Article ID 640936, pp.1-8
- [26] Pedersen, U., Rasmussen, P.B., Lawesson, S., Synthesis of Naturally occurring curcuminoides and related compounds, LiebigsAnnalen der chemie (EurJOC), 1985, 8, pp.1557-1569.