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Abstract 
This article assumes that the random error term obeys the asymmetric Laplace distribution, and realizes the 

quantile regression of the likelihood function of the asymmetric Laplace distribution specified by the negative 

binomial distribution for Bayesian analysis, and uses the Gibbs sampling algorithm to obtain the parameters. 

The statistical properties of the posterior distribution are compared and the influence of whether the scale 

parameter is parameterized on the statistical properties of the model estimated coefficients is compared. The 

experimental results show that the statistical properties of the estimator obtained after the scale parameter is 

parameterized are better. 
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I. INTRODUCTION 

Since the least-squares estimation was proposed, it has been widely used in the field of social economy, 

but sometimes it can’t fully describe the relationship between dependent variables and independent variables. 

Therefore, quantile regression was proposed to supplement the deficiency of focusing only on conditional mean 

estimation based on least-squares estimation. Koenker first proposed the concept of "Quantile Regression" in 

1978 [1]; Koenker and Machado studied the relationship between quantile and asymmetric Laplace distribution 

in 1999 [2]; Yu used Bayesian quantile regression based on asymmetric Laplace distribution to estimate 

parameters in 2001 [3]. At the same time, it is confirmed that even if the prior distribution is not appropriate, the 

posterior distribution obtained is also appropriate; with the development of the times, the combination of 

quantile regression and Bayesian analysis method is applied to more and more fields. In 2005, Yu et al. studied 

the distribution of wages in Britain based on this method [4]. 

In previous studies, researchers have always set the scale parameter of asymmetric Laplace distribution 

as 1. In 2009, Wang Xinyu and other researchers proved that the scale parameter should be parameterized [5].In 

2012, Zeng Ping and others studied the Bayesian analysis of non-standard distribution in WinBUGS software 

[6]. Based on this idea, this paper realizes the parameter estimation of Bayesian quantile regression of 

asymmetric Laplace distribution specified by negative binomial distribution in WinBUGS. 

 

II. ASYMMETRIC LAPLACE DISTRIBUTION (ALD) 

When using the Bayesian analysis method to estimate the quantile regression model, to make the model 

more robust, it is assumed that the random error term obeys ALD, so the maximum likelihood function is 

obtained according to its probability density function. The posterior distribution of parameters can be obtained 

from the prior distribution of parameters by the Bayesian theorem. 

 

2.1 LAPLACE DISTRIBUTION (LD) 

Since the probability density function of Laplace distribution (LD) is composed of two exponential 

functions, it is also called double exponential distribution. The probability density function of LD is 

1
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                             (2.1) 

It is said that the random variable y obeys the Laplace distribution, the mean is  , and the variance is 22 . 

Among them, the location parameter     and the scale parameter 0  ; this distribution is also called 

the one-variable Laplace distribution, and the normal distribution is the binary Laplace distribution. 
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2.2 PROBABILITY DENSITY FUNCTION OF ASYMMETRIC LAPLACE DISTRIBUTION 

The probability density function of ALD is 
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where the location parameter     , the scale parameter 0  , the skewness parameter 0 1q  , and 

the loss function is  
1
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The density function diagram of ALD is shown in figure 1. When the position parameter  and the 

scale parameter are fixed, with different values of the skewness parameter q , the density function diagram of 

ALD is also different; when 0.2q  , the density diagram of ALD is biased to the right. When 0.5q  , the 

density diagram of ALD is symmetrical on the left and right sides of the position parameter. When 0.8q  , the 

density diagram of ALD is biased to the left. 

 

Figure 1:Density function of asymmetric Laplace distribution (ALD)   ( 0, 1, )q  

 

III. BAYESIAN QUANTILE REGRESSION 

When using the Bayesian analysis method to estimate the quantile regression model, we first need to 

build a linear regression modeland then assume that the random error term obeys ALD. Then, based on the 

Bayesian method, we use the Markov chain Monte Carlo (MCMC) method to sample to obtain the posterior 

distribution of parameters. Finally, we test the estimation effect of parameters through data simulation analysis. 

 

3.1 LINEAR MODEL 

The linear regression model is: 

0 1 ,y x u                                      (3.1) 

where let   0 1;Z x x    , so  ;y Z x u  , where y is the dependent variable, x is the independent 

variable, 0 is the constant parameter to be estimated, 1  is the coefficient parameter to be estimated, and the 

random error term ~ (0, , )u ALD q , that is,  ~ ( ; , , )y ALD Z x q  . 

 

3.2 ASYMMETRIC LAPLACE DISTRIBUTION LIKELIHOOD FUNCTION 

The likelihood function of ALD probability density function is: 
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          (3.2) 

where    0q i i iu u q I u       is loss function,and  ;i i iu y Z x   .The core idea of Bayesian quantile 

regression based on asymmetric Laplacian distribution is: transform the optimal solution problem of quantile 

regression into solving an asymmetric Laplace distribution probability density maximization of the likelihood 

function. 

 

3.3 SPECIFYING ASYMMETRIC LAPLACE DISTRIBUTION WITH NEGATIVE BINOMIAL 

DISTRIBUTION 

WinBUGS (Bayesian inference Using Gibbs Sampling, BUGS)is a software dedicated to Bayesian 

statistical analysis. WinBUGS is a version under the Windows operating system. The biggest advantage of this 

software is that it is free for users and flexible in operation, so it is widely used in Bayesian analysis; but in 
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WinBUGS software only more than 20 standard distributions are provided, and the non-standard distribution of 

ALD involved in this article is not included. Therefore, it is necessary to specify ALD with a negative binomial 

distribution. First, compile the program that specifies the likelihood function of ALD in the WinBUGS software 

for negative binomial distribution; then use the "bugs()" function in the Rstudio software to call the WinBUGS 

compiled and saved program, and perform Gibbs sampling based on the WinBUGS software to achieve 

Simulation of Bayesian quantile regression. 

In the Bernoulli experiment sequence, the probability of occurrence of event A in each experiment is p . 

If X is the number of experiments when event A occurs for the r th time, then the possible value of X is 

, 1, , ,r r r m  , and X is said to obey negative binomial distribution or Baska distribution, its distribution is 

listed as follows: 
1

1( ) (1 ) , 1, ,r r k r

kf X k C p p k r r 

                               (3.3) 

where ~ ( , )X Nb r p , mathematical expectation as
1

r
p

, and variance as  
2

1
1r p

p
 [7]. 

 

3.3.2 The negative binomial distribution specifies the asymmetric Laplace distribution 

Suppose the logarithmic density function of the data is  log ( ; ; , , )i i il f y Z x q  , the probability 

density function is    ( ; ; , , ) expi i if y Z x q l   , and the negative binomial distribution data are

0, 1,2, ,ih i n   , then the likelihood function is    
1
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 expi ip l c  ,                                       (3.4) 

in order to ensure  01ip  ， , so a larger 600c  is reduced, where
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IV. NUMERICAL SIMULATION ANALYSIS 

The model for generating random data is 

1 2 ,Y X                                            (4.1) 

where  ~ 0,10X U and  ~ 0,1,ALD q  use the generated random data to simulate model(3.1). 

 

4.1 THE SCALE PARAMETER IS SET TO 1 

When the scale parameter is set to 1, and the parameters to be estimated are 0 and 1 , it is assumed 

that the prior distribution of the parameters to be estimated obeys the normal distribution. According to the 

Bayesian theorem, the joint posterior distribution of the parameters is 

      ; , ; ; ,1, ,i i iP y L y Z x q f                              (4.2) 

where  f  is the prior distribution of the coefficient  to be estimated, so 
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substituting formula (4.3) into formula (3.4), the expression of parameter
ip can be obtained: 
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substituting formula (4.4) into formula (3.5), the joint posterior distribution of the parameters can be expressed 

as: 
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Figure 2 shows the likelihood function of ALD specified by the negative binomial distribution, the 

prior distribution is set to ~ (0,100)N , the parameters 0 and 1 are at the 0.75 quantile and the sample size is 

75, the iteration is 10000 times, and the burn-in period is 5000 times. Sampling trajectory graph, density graph 

and autocorrelation graph, the results show that the 5000 sampling values of parameter parameters 0 and 1

fluctuate up and down the set value, and the autocorrelation coefficient tends to zero as the lag period increases. 

Therefore, the Markov chains formed by sampling all converge. 

 

 

Figure 2:Trajectory graph, density graph, and autocorrelation graph of 0
 and 1

 sampled values 

 

Table 1:The mean, standard deviations, and MC errors of parameters
0

 and
1

 when is set to 1.  

prior information 

sample 

size 

quantile 0.25 0.5 0.75 

parameter mean sd MC errors mean sd MC errors mean sd MC errors 

 ~ 0,100N  

25 
0  -0.35840 0.63150  0.04100  0.18450  0.48930  0.05223  1.79900  0.69480  0.05175  

1  2.08100  0.09703  0.00629  2.09700  0.07615  0.00811  1.98100  0.10740  0.00796  

75 
0  -0.32360 0.55320  0.04079  44.99000  10.32000  1.22800  1.39600  0.37280  0.02616  

1  1.99400  0.08611  0.00640  -34.29000 1.13100  0.13460  2.03900  0.06557  0.00462  

100 
0  -0.30170 0.43700  0.03132  84.40000  12.04000  1.43300  18.37000  8.46500  0.95450  

1  1.91100  0.08437  0.00593  -40.34000 1.37400  0.16360  -30.82000 1.36600  0.15430  

 ~ 0,10N  

25 
0  -0.29870 0.65390  0.04001  0.21630  0.53060  0.04218  1.77600  0.65420  0.04501  

1  2.07000  0.10390  0.00630  2.09200  0.08788  0.00705  1.98300  0.10100  0.00693  

75 
0  -0.32150 0.52270  0.03719  0.58650  0.33750  0.02382  1.37800  0.38330  0.02871  

1  1.99300  0.08427  0.00607  2.02700  0.05553  0.00397  2.04300  0.06915  0.00511  

100 
0  -0.22660 0.39260  0.02421  0.55010  0.32010  0.02214  1.31600  0.28910  0.01687  

1  1.90000  0.07868  0.00454  1.99000  0.06267  0.00430  2.01600  0.05881  0.00330  

 ~ 0,1N  

25 
0  -0.11460 0.54310  0.03086  0.23480  0.46300  0.03398  1.31800  0.55460  0.03778  

1  2.04200  0.09239  0.00530  2.08500  0.07854  0.00577  2.03900  0.09213  0.00603  

75 
0  -0.17590 0.47580  0.03267  0.57610  0.32780  0.02268  1.28700  0.32700  0.02252  

1  1.96800  0.07960  0.00542  2.02600  0.05278  0.00357  2.05400  0.06142  0.00417  

100 
0  -0.17960 0.37620  0.02335  0.53360  0.31380  0.02143  1.22900  0.26450  0.01510  

1  1.88800  0.07653  0.00455  1.99100  0.06314  0.00419  2.02700  0.05690  0.00324  
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The above table uses the Gibbs sampling algorithm to sample the model parameters and the number of 

samples is 10,000. To eliminate the influence of the initial value of the parameters on the sampling distribution, 

the first 5000 sampling values are removed. Finally, the mean, standard deviations, and MC errors of the 

posterior distribution of the parameters can be obtained, as shown in table 1: 

(1)When the prior distribution and quantile are the same, as the sample size n increases, the standard 

deviations and MC errors of the parameters 0 and 1 to be estimated gradually decrease. 

(2)Under the same condition of sample size and quantile, with the enhancement of the prior distribution, 

the standard deviation and MC error of the parameters 0 and 1 will be smaller, that is, when the prior 

information is enhanced, the estimation accuracy of the parameters can be improved. 

(3) When the prior information, sample size, and quantile are the same, the standard deviation and MC 

errors of 1 are always smaller than the standard deviation and MC errors of 0 , that is, the estimation accuracy 

of the coefficient term obtained in the WinBUGS software is often higher than that of the constant term 

estimated accuracy. 

(4)In these three prior settings, when the sample size and prior information are the same, except that the 

prior information is  ~ 0,100N  and the sample size is 100, the standard deviations and MC errors ratio of 

parameters 0 and 1 at the 0.25 quantile are in the standard deviations and MC errors at 0.5 quantile and 0.75 

quantile are small. Under other conditions, the standard deviations and MC errors of parameters 0 and 1 at 0.25 

quantile are both at 0.5 quantile and 0.75 quantile. The lower standard deviations and MC errors are large, that is, 

the estimation accuracy of the parameters 0 and 1 in the median and high quantile are higher. 

 

4.2 PARAMETERIZE THE SCALE PARAMETER  

When the scale parameter in ALD is set to 1, although the estimated accuracy of the parameter is high, 

it is not appropriate in practical applications. Therefore, the scale parameter in ALD should be parameterized 

[5]. 

When , 0 , and 1 are all to be estimated, assuming that the prior distribution of the parameters 0

and 1 to be estimated is a normal distribution, the prior distribution of the scale parameter is a chi-square 

distribution, and the degree of freedom is 4, the smoothness of the three parameters to be estimated is higher. 

when the three parameters to be estimated have higher smoothness. According to the Bayesian theorem, 

the joint posterior distribution of the parameters is 

        ; , ; ; , , ,i i iP y L y Z x q f g                             (4.6) 

where  f  is the prior distribution of the coefficient  to be estimated,  g  is the prior distribution of the 

scale parameter , and  2~ 4  , 
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substituting formula (4.7) into formula (3.4), the expression of parameter
ip can be obtained as: 
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substituting formula (4.8) into formula (3.5), the joint posterior distribution of the parameters can be expressed 

as: 
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              (4.9) 

Figure 3 shows the likelihood function of the ALD specified by the negative binomial distribution, and 

the prior distribution is set to ~ (0,100)N , the parameters , 0 , and 1 are at the 0.75 quantile, the sample 

size is 75, the variance is 100, iteration is 10,000 times, and the burn-in is the trajectory graph, density graph and 
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autocorrelation graph of Gibbs sampling values with a period of 5000 times. The results show that the 5000 

sampling values of parameters , 0 , and 1 fluctuate up and down the set value, and the autocorrelation 

coefficient tends to zero with the increase of the lag period, so the Markov chain is all convergesby sampling. 

 

 

 

 

Figure 3:.The trajectory graph, density graph, and autocorrelation graph of the sampled values of 0
 , 1

 , 

and  
 

Table 2:The mean, standard deviations, and MC errors when parameters 0
 , 1

 , and are all to be 

estimated 

prior information 

sample 

size 

quantile 0.25 0.5 0.75 

parameter mean sd MC errors mean sd MC errors mean sd MC errors 

 ~ 0,100N  

25 

0  -0.33670 0.40060  0.03062  0.35630  0.20250  0.01542  1.83000  0.36700  0.02749  

1  2.09500  0.05705  0.00431  2.06900  0.03493  0.00265  1.97100  0.05173  0.00382  

  0.26650  0.05981  0.00097  0.27850  0.06252  0.00135  0.28530  0.06190  0.00100  

75 

0  -0.30430 0.37670  0.02906  0.67030  0.25230  0.01818  1.37000  0.21980  0.01712  

1  1.99400  0.05685  0.00435  2.01600  0.03935  0.00282  2.04000  0.03849  0.00303  

  0.36110  0.04300  0.00069  0.44200  0.05199  0.00077  0.38260  0.04594  0.00085  

100 

0  -0.22370 0.30070  0.02114  0.59590  0.24460  0.01644  1.29900  0.17460  0.00969  

1  1.90100  0.05651  0.00377  1.98500  0.04770  0.00317  2.01300  0.03728  0.00209  

  0.43600  0.04554  0.00068  0.50060  0.05226  0.00081  0.41040  0.04221  0.00051  

 ~ 0,10N  

25 

0  -0.32930 0.40150  0.02860  0.37600  0.20600  0.01616  1.74600  0.42000  0.03560  

1  2.09300  0.05813  0.00405  2.06500  0.03475  0.00270  1.98100  0.06092  0.00512  

  0.26570  0.05918  0.00102  0.27930  0.06258  0.00118  0.28690  0.06471  0.00131  

75 

0  -0.23050 0.36190  0.02608  0.60700  0.22840  0.01558  1.37600  0.21680  0.01600  

1  1.98200  0.05572  0.00397  2.02500  0.03634  0.00251  2.03800  0.03760  0.00277  

  0.36020  0.04188  0.00067  0.44150  0.05192  0.00082  0.38270  0.04496  0.00070  

100 0  -0.19130 0.28030  0.01765  0.57280  0.25850  0.01950  1.30100  0.18850  0.00996  
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1  1.89500  0.05317  0.00330  1.98800  0.05010  0.00375  2.01300  0.04022  0.00216  

  0.43480  0.04560  0.00073  0.50180  0.05292  0.00076  0.41110  0.04203  0.00069  

 ~ 0,1N  

25 

0  -0.19100 0.39360  0.02783  0.35350  0.19120  0.01292  1.64100  0.36190  0.02686  

1  2.07400  0.05814  0.00418  2.06800  0.03273  0.00219  1.99300  0.05299  0.00392  

  0.26610  0.05888  0.00123  0.27820  0.06085  0.00122  0.28750  0.06408  0.00123  

75 

0  -0.23810 0.33500  0.02487  0.58420  0.22110  0.01404  1.31800  0.21150  0.01673  

1  1.98200  0.05384  0.00402  2.02700  0.03471  0.00226  2.04700  0.03851  0.00306  

  0.36030  0.04248  0.00064  0.44260  0.05299  0.00071  0.38260  0.04450  0.00061  

100 

0  -0.16190 0.26430  0.01769  0.59740  0.25150  0.02053  1.26700  0.17340  0.01124  

1  1.88800  0.05178  0.00335  1.98200  0.04916  0.00402  2.01900  0.03739  0.00236  

  0.43530  0.04439  0.00061  0.50080  0.05209  0.00082  0.40940  0.04283  0.00064  

 

The above table uses the Gibbs sampling algorithm to sample the model parameters and the number of 

samples is 10,000. To eliminate the influence of the initial value of the parameter on the sampling distribution, 

the first 5000 sampling values are removed. Finally, the mean, standard deviations and MC errors of the 

posterior distribution of the parameters can be obtained, as shown in table 2: 

(1)When the prior distribution and quantile are the same, as the sample size increases, the standard 

deviations and MC errors of parameters , 0 , and 1 gradually become smaller. 

(2)Under the same conditions of prior information, sample size, and quantile, for the size of the 

standard deviations: 1 0    , but for the size of the MC errors: 1 0    . 

(3)Under the same condition of sample size and quantile, with the enhancement of the prior distribution, 

the standard deviations and MC errors of parameters , 0 , and 1 are smaller, that is, when the prior 

information is enhanced, the estimation accuracy of the parameters can be improved. 

(4)When the prior information is the same and the sample size is 100, the standard deviations and MC 

errors of the parameters , 0 , and 1 at the 0.75 quantile are smaller than the standard deviations and the MC 

errors at the 0.25 quantile and 0.5 quantile. 

Comparing table 1 and table 2, we can see that when the prior information, sample size, parameters and 

quantile are the same, the standard deviations and MC errors of parameters 0 and 1 in table 2 are smaller than 

those of parameters 0 and 1 in table 1 MC errors. Therefore, parameterizing the scale parameter can improve 

the estimation accuracy of parameters 0 and 1 , that is, the scale parameter should be parameterized instead of 

being set to 1. 

 

V. CONCLUSION 

In this paper, in the Bayesian quantile regression analysis, the relevant statistical properties of the 

parameter posterior distribution are obtained through the Gibbs sampling algorithm. The experimental results 

show that the likelihood functionof ALD is specified based on the negative binomial distribution. After the scale 

parameter is parameterized, the statistical property of the estimator of the posterior distribution of the parameter 

is better than the statistical property of the estimator when the scale parameter is assumed to be 1, so the scale 

parameter should be parameterized; even if the prior distribution is improper, the obtained posterior distribution 

is also suitable; a proper prior distribution can improve the accuracy of Gibbs sampling estimates. 
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