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Abstract  
Social network has become diversified and conglomerate. This is an interaction network in society or relations 

between organizations or persons. Social network analysis (SNA) is network censoring to understand the 

sequence and behavior of participants. Exploring social network community has been an important research 

orientation of SNA. Network community structure provides detailed, comprehensive information about 

organization, behavior and function of network system. Social network is often expressed in the form of data 

graph structure. Hence, the mining of structure of social network is mainly associated with graph clustering 

problem. Many algorithms have been proposed to solve the problem. Here we introduce research results of 

spectral clustering approach to reduce the number of dimensions of data set along with optimization technique 

in order to reduce calculation complicity of algorithm. Experimental results on real data set have displayed the 

efficiency of proposed algorithm. 
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I. INTRODUCTION 

Clustering is the most important application for graph data mining problem, especially social network 

community finding. The first analysis of community structure was made by Weiss and Jacobsen [1] in the 

research on dividing civil servant working in a government organization into groups. Up to now many 

algorithms have been studied and developed. For example, Flake [2], Radicchi [3, 4]… proposed a method to 

find structure based on dividing G graph cluster into smaller sub-graph with unique characteristics. This 

problem belongs to NP- Hard class, Girvan and Newman [5] proposed hierarchical clustering to find 

community, by which one must calculate edge betweenness and then cut edge of the highest betweenness. The 

complexity of the algorithm is equivalent to O (k
2
n) with k edges to be trimmed. In order to improve the speed 

of Girvan- Newman algorithm, some approaches were proposed by Tyler [6], Gregory [7], Brandes. However, 

the complexity remains high, about O(mn
2
) with n as the number of vertex and m as the number of edges. The 

orientation proposed by the authors is aimed at reducing the number of dimensions of vector space ( source 

data) by spectral clustering, then reducing calculation volume when the community structure is detected, so the 

calculation complexity is reduced correspondingly. 

The structure of the article consists of 4 parts. Part 1 (Foreword): introduction of research contents. Part 

2: summarizing basic knowledge regarding algorithms. Part 3: presentation of community detecting by spectral 

clustering, proposal of algorithm, experimental running on data set. Part 4: Conclusion. 

Appraisal: As evidenced by experimental results on conglomerat data set shown in Table 3 and Fig 5-6, the 

community finding algorithm yields good results with higher speed (by an average of 30%) compared with 

algorithm of Ulrike Von Luxburg [13]. The quality of detected communities are also better (by an average of 

23%). This proves the efficiency of the algorithm. 

 

II. SUMMARIZING BASIC KNOWLEDGES 

2.1 Social network graphs: Notation G = (V, E), where V is the set of vertices representing the members of the 

social network; E is the set of edges representing the social relationships among the members. A community C 

is a subset of vertices of V such that for each vertex v  C there are many edges connecting vi with vertices u in 

C and few edges connecting vi with other vertices w in V \ C [9] , [10]. 

 

2.2.Similar graph: Notation G (V, E, W), where V = {X1, X2, ..., Xn} is the set of vertices, E is the set of edges 

{(Xi, Xj)} satisfying the measure W (Xi, Xj)> 0 where W is the measure of the similarity [10], [11].  The graph 
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G is divided so that the edges in the group have the greatest similarity and the edges connecting the groups have 

the smallest similarity measures. To represent a G graph, the following methods can be used: 

+ Adjacent matrix ,( )i j n nW w   , where ,

1,( , ) ,
w

0,( , ) .
i j

i j E

i j E


 


 

+ The connection matrix ,( )i j n nA a  , determined by the measure W, is defined by the problem. 

+ Degree matrix 
,( )i j n nD d  ,   

,

( ), ;

0, .

i

i k

d v i k
d

i k


 


, where ( )id v is the degree of the vertex; G is an unweighted undirected graph. 

ij

1,

, ;

0, .

n

ki j

a i j
d

i j






 
 


, where 

ija  is the connection value between the vertices, G is an weighted directed 

graph. 

In research and experiments, the determination of the equivalence between 2 objects Xi, Xj is evaluated 

according to the Gaussian distribution: 
2

2
W( , ) exp( )

2

i jX X
i j




          (1) 

Where  is the standard deviation. In the experiment, we choose value   to adjust the cluster size. 

The higher the value of W (i, j), the stronger the association between Xi and Xj. In addition, the distance 

between 2 objects is also determined by the Euclidean distance: 

( , ) i jd i j X X            (2) 

Obviously the bond is higher if and only if the distance is smaller. Then, from the distance, it is 

possible to determine the linkage through many different methods. One of the methods we selected is the 

spectral method [12], [13], in order to reduce the number of dimensions of the data being examined and thus the 

procedure for determining the community on the graph is much more effective in terms of time and 

computational complexity. 

 

2.3.Some concepts of spectrum:  

Spectrum is a set of characteristic values of a matrix L: Spec(L) = 
1

1

...

...

t

tm m

  
 
 

 

 Where 1... t   are eigenvalues, 1... tm m are the adjustment coefficients, L is a Laplace matrix. Laplace 

matrix has some basic properties [10], [14], [15]: 

+ The sum of items on rows or columns is equal to zero. 

+ L is a symmetric, inverse square matrix. 

+ L is a positive half determination. 

+ L is an operator :L V R  , with V is the set of vertices in the graph G, R is the set of real numbers. 

+ The eigenvalues of L are othonormal basic. 

+ L depends on the order of vertices while spectrum is invariant for the graph. 

The problem is that from the adjacent matrix A representing the graph, we need to build up an equivalent matrix 

L also capable of characterizing the graph that we are considering. There are many ways to construct an L 

matrix from A, for example: 
1 1

2 2DL I D A
 

  , or L=D-A.  

From the equation Lu u , we will determine the eigenvalues and the eigenvectors of L. The values of 

eigenvectors are the spectral values for the graph vertices and are used to compute clustering graph and are used 

to compute clustering the graph. In addition, the eigenvectors will be standardized for easy computation [16], 

[17]. Thus, the number of dimensions of the spectrum is less than the number of dimensions of the original set 

of vertices in the graph. From the adjacent matrix A of dimensions n n , we have transformed to proccesing 

problem with n elements of the eigenvector. The number of clusters detected in spectral clustering method 

corresponds to the k value that we select for the K-mean clustering technique. 

 

2.4.Criteria for evaluating community discovery: Newman and Girvan [18], X. Liu et al [19] proposed the 

quantity Modularity to evaluate the quality of the detected community: 
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ij ij

, 1

1
( ) ( , )

2
i j

i k

Q a p C C
m




                                 (3) 

Where A is the adjacency matrix, pik is the number of edges expected in C, ( , ) 1i jC C   if i, j belong to the 

same community and ( , ) 0i jC C   if vice versa. Based on the probability of connectivity between vertex i and 

vertex j we have: 

ij

ij

1
( ) ( , )

2 2

i j

i j

k k
Q a C C

m m
                                       (4) 

Where ki, kj is the degree of vertex i and vertex j. Denote nc is the number of communities, lc is the 

number of edges connecting the vertices of community C, dc is the total number of degrees of vertices of 

community C, we have: 

2

1

( ( ) )
2

cn

c c

c

l d
Q

m m

                                              (5) 

The maximum value of Q is determined: 

max

1 1

1 1
min {[(m- ) ( ( )]}= min { -E Cut }

c cn n

C c x c C C x C

c c

Q l m E l Cut
m m 

           (6) 

Where 
2

( )
4

c

x c

d
E l

m
  is the expected number of links,

1

cn

C c

c

Cut m l


   is the number of 

intercommunities of C and x CE Cut is the expected number of edges of C's communities. A community C with 

Qmax reaches positive value and the greater the community, the more clearly defined the community, ie the 

separation of the community is good. 

 

III. COMMUNITY DETECTING  BY SPECTRAL CLUSTERING 

3.1.Spectral clustering problem and method 

3.1.1 Problem: Consider the graph of network G = (V, E) with 1{ ,..., }NV v v is the set of vertices, a subset 

Z V  with measure : 
,

W( , ) ( , )
i j

i j

i Z j Z

Z Z A i j
 

  ; where A is the connection matrix or the adjacency matrix. 

The value of subset Z is determined as: ( ) i

i Z

Vol Z D


 ; where 
1

( , ); 1..
N

i

j

D A i j i N


   is the value of the ith 

vertex of the graph. Determine the set of non-empty sets 1,... kZ Z such that i jZ Z   and 

1 ... kZ Z V   ; at the same time satisfy the good zoning criteria (in each group, the number of edges is the 

largest, but the number of edges between the two groups is the smallest). 

3.1.2. Spectral clustering method: When the network is represented by graphs, community detection has a 

special relationship to graph clustering. Divide the graph G into 2 groups A, B such that the weights of the edges 

connecting vertices from A to the vertices of  B are minimum [20], [21] and the edges in a group have high 

weight. Using the Min-cut method with slices, wij is the edge weight (i, j), the problem is done with choosing 

the slice to reach min, and reach max. Cut is done as standard: 

1 1
( , ) ( , )( )

( ) ( )
NCutJ A B Cut A B

vol A vol B
          (7) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The graph is divided into 2 clusters A, B 
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Where :  

ij

1

( ) W
n

i

i A j i A

Vol A d
  

             (8) 

ij

1

( ) W
n

i

i B j i B

Vol B d
  

            (9) 

This calculation has ( )O V E complexity and will not perform cluster division if an isolated vertex is 

encountered. To overcome this, we will find other more efficient methods, one of which is to use spectral 

method [18], by using eigenvector 1 2( , ,..., )kX v v v with L = D-A. Or use eigenvector 1 2( , ,..., )kY u u u    with 

1 1

2 2DL D A
 

  . The method of Ulrike Von Luxburg [13] has good clustering results with faster time than 

traditional clustering methods. 

 

3.2. Our proposed algorithm 

Our proposed method is based on the principle of using the eigenvectors of the Laplace matrix, 

transforming the set of original data objects into a set of points in the space whose coordinates are elements of 

vector. The points are then clustered using standard k-mean techniques. Unlike other methods, we choose the 

Gaussian distribution function to determine the value of the bonding matrix A, at the same time the k value is 

quantified by experience, then computes and selects k eigenvetor from the matrix L and perform k-mean 

clustering method on spectral set of original data set. The process of calculating eigenvalues and eigenvectors is 

also improved to reduce computation time (Algorithm 3.2.1). Existing methods use the estimation function 

corresponding to each data set to determine the connection matrix A. Through experimental process with many 

data sets (https://snap.stanford.edu), we found that the selection of Gaussian distribution function is very 

efficient, because in practice, most of the properties of the objects with their relationship obey the normal 

Gaussian distribution. The spectrum method can quickly calculate and show the most common and the best 

ability to enroll in the community, which is measured by the modularity value that determines the quality of the 

community. 

Description of the algorithms: 
Algorithm 3.2.1 (Determining the eigenvector of the matrix V) 

Input: Matrix V has dimension: n  X   n 

Output: Eigenvetor of V 

Begin 

Step 1: 

Init (0)x u ; 
(0)   assign 

(0)z =  

1

2( * )x x x


; such that (0) 1z  . Let t = 1. 

   Step 2: 

+ Defines the matrix M V I   

+ Solve the equation 
( ) ( 1)t tMy z  ; calculate 

*
1

( ) ( ) ( ) ( )2( )t t t tz y y y


  

Step 3: 

+ Calculate 

( )

( )

h

h

t

k

t t

k

z

y
   ; If V is the Hermitian matrix then calculate  

*( 1) ( ) 1( )t t

t z y    

+ Calculate  *

( ) ( 1)t t

t
    ; or   *

( ) ( 1)t t

t
     

Step 4: 

+ t:=t+1; Return to Step 2. Stop repeating if : 
( ) ( 1)t tz z    

   End. 

 

Algorithm 3.2.2 (Algorithm SC-NT) 

Input: Given the data set xN FP R , N: number of data points, F :number of dimensions, k: number of 

communities. 

Output: Communities   
1 2, ,..., kZ Z Z ; where  {i ,i=1..k}i i iZ y C   

Begin 

1. For iP P  ( 1..i N ) if  ( e ( , )
jP P i jcon ct P P then

2
( , ) exp( )

2

i jp p
A i j




  ; , 1..i j N  

https://snap.stanford.edu/
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2. For iP P  deg( iv )=deg( iP ); iP P  

3. For , 1..i j N  
ij 1 2( , ,..., )ND diag v v v  

4. Comput L=D-A //  Laplace matrix  

5. Comput k eigen-vector 1 2, ,..., ku u u  of L so that: Lu u  

6. Select 1 2{ , ,..., }ku u u u // select  u  from set 1 2{ , ,..., }ku u u  

7. Select y stand{u} // Select 
k

iy R  from the set of vectors u, normalize u get y 

8. _ a ( )iC k me ns y , i=1..k  // Clustering points iy  into  k cluster 1 2, ,..., kC C C   according to k-Means Method  

9. Return {P }i i i jZ y C   

10. Comput Q 

End. 

 

Appraisal: 

i. When using the Gaussian distribution function to determine the connection matrix A, the quality of the 

communities is better. The connection between the two objects xi, xj is strong if the objects are very 

similar. The similarity between two objects xi, xj is determined by the Gaussian distribution. 

ii. Because the number of eigenvectors in y is much smaller than the number of dimensions F, it is obvious 

that the implementation of the k_mean algorithm on y will reduce the computational complexity 

throughout the space. 

iii. Because the number of communities to be determined is k and from the k-Means algorithm (step 8), it is 

easy to see that the complexity of the algorithm is assessed to be equivalent to 2( * ).O k N  

 

3.3. Experimental results 

To evaluate the accuracy of the algorithm, we run the algorithm with some specific data sets. We use small 

datasets to test the accuracy of the clustering algorithm. We use large real data sets [22] to compare the 

proposed algorithm with other algorithms. The experiment was done on Matlab version 2019. 

 

3.3.1 Example 1: 

Consider the network graph including 8 objects A (5,3,2,3); B (9,7,8,8); C (7,5,6,8); D (6,8,7,9); E (7,8,9,8);           

F (8,9,7,6); G (5,7,7,6); H(8,6,9,8) and the links as corresponding graph represent the network (Figure 2): 

 The processing of algorithm is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Network with 8 vertices and weight links 

Step1, 2, 3: Values of connection matrix A (determined by the Gauss distribution) and order matrix D: 

 

 

 

 

 

 

 

1 0.3 0.4 0.3 0 0 0 0

0.3 1 0.7 0 0 0 0 0

0.4 0.7 1.8 0.7 0 0 0 0

0.3 0 0.7 2.3 0.7 0.6 0 0

0 0 0 0.7 2.2 0.7 0 0.8

0 0 0 0.6 0.7 2.1 0.8 0

0 0 0 0 0 0.8 0.8 0

0 0 0 0 0.8 0 0 0.8

L

   
 
 
 
   
 
    
   
 

   
 
 

  

1.0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0

0 0 1.8 0 0 0 0 0

0 0 0 2.3 0 0 0 0

0 0 0 0 2.2 0 0 0

0 0 0 0 0 2.1 0 0

0 0 0 0 0 0 0.8 0

0 0 0 0 0 0 0 0.8

D

 
 
 
 
 
 
 
 
 
 
 
  

0 0.3 0.4 0.3 0 0 0 0

0.3 0 0.7 0 0 0 0 0

0.4 0.7 0 0.7 0 0 0 0

0.3 0 0.7 0 0.7 0.6 0 0

0 0 0 0.7 0 0.7 0 0.8

0 0 0 0.6 0.7 0 0.8 0

0 0 0 0 0 0.8 0 0

0 0 0 0 0.8 0 0 0

A

 
 
 
 
 
 
 
 
 
 
 
  
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Step 4: The matrix L is calculated: L=D-A 

Step 5: Eigenvectors x is defined: Lx x ; We have eigenvalue    

 

 

 

 

 

 

 

 

 

Step 6, 7: Select 
3U R  ; k= 3; Normalizing U we have Y: 

 

 

 

 

 

 

 

 

 

 

 

Step 8, 9: Clustering for points ( ), 1..8iY i   into three clusters 1,2,3  using the k-Means algorithm: 

Table 1. The clustering results in example 1 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Results received 3 communities 

Appraisal: The proposed algorithm has done good clustering, the obtained communities are reasonable.  

3.3.2 Example 2. We use a large assumption data set, perform algorithm SC_NT and compare it with the 

UlrikeVon Luxburg algorithm [13]. We obtained the results in Table 2 (n - number of vertices, m-number of 

edges, k-number of communities, t-times). 

Objects Communities 

A 1 

B 1 

C 1 

D 1 

E 2 

F 3 

G 3 

H 2 

0

0.2754

0.5246

1.2272

1.4357

2.1580

3.0937

3.2854



 
 
 
 
 
 
 
 
 
 
 
  
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Table 2. Results comparing 2 algorithms ( Running time: seconds) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Running time comparison 

 

3.3.3. Example 3. We used the international standard real data [22], tested the algorithm, calculated the quality 

of the community obtained and compared with the algorithm of UlrikeVon Luxburg [13]. The obtained results 

are shown in Table 3 (n - number of vertices, m - number of edges, k - number of communities, Q - community 

quality, t-time). 

Table 3. Results comparing 2 algorithms (Running time: seconds) 

No Data set n m k 
U_Von_LB  SC_NT  

  Q t Q t 

1 Karate Club 34 78 2 0,31 1,35 0,45 0,53 

2 
Dolphin Group 62 159 

3 0,35 1,55 0,49 0,86 

3 2 0,53 2,05 0,55 0,97 

4 Les Misérables Group 77 254 5 0,42 3,74 0,52 1,93 

5 Book Amazon 105 441 3 0,47 3,93 0,58 1,26 

6 Political blogosphere 1490 19090 3 0,49 77,35 0,67 55.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Running time comparison 

No n m k t_U_Von_LB t_SC_NT 

1 100 500 10 2,45 0,65 

2 200 1000 25 7,9 1,85 

3 400 2000 32 16,8 4,75 

4 600 3000 43 21,3 11,8 

5 800 4000 50 28,16 20,8 

6 1000 5000 67 68,6 45,2 
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Figure 6. Community quality comparison  

Appraisal: Through the experimental results on the large datasets given in Table 3 and Figures 5-6, we see that 

the proposed algorithm detected the communities as well. The runtime of the proposed algorithm is faster (on 

average about 30%) than that of UlrikeVon Luxburg [13]. The quality of the communities obtained is also 

higher (average 23%). This confirms the effectiveness of the proposed algorithm. 

 

IV.CONCLUSION 
We introduced a summarized approach to reduce the number of dimensions of data (in the form of 

matrix, may be multi- dimensional) to the vector form (real number chain), along with optimization Min-cut 

function with the help of Laplace matrix, so it is very efficient in data processing and finding community 

structure on social network. The key element of the approach is Spectrum technique (spectral clustering). The 

method ensures the discovery of reasonable number of network communities. We have proved that the proposed 

algorithm can be efficient in finding community and it can be applied to explore complicated structure of social 

network (which really mus be described as multi- dimensional space). The running time is much less than that of 

Ulrike Von Luxburg algorithm. The quality of detected communities is also better. In the coming time, the 

author group will extend its research, complete  algorithm (for directional graphs, real data, multidimensional ...) 

and improve graph clustering technique in order to quickly detect high quality community for analysis and 

exploiting information on social network. 
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