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ABSTRACT 
In this paper, we have generated a new distribution by using the Poisson-G family with baseline distribution as 

inverted Lomax distribution named Poisson inverted Lomax distribution. Some distributional properties of the 

Poisson inverted Lomax distribution are presented. The model parameters of the proposed distribution are 

estimated using three well-known estimation methods namely maximum likelihood estimation (MLE), least-

square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods. We have calculated the 

asymptotic confidence intervals based on maximum likelihood estimates. All the computations have been 

performed in R software. The application of the proposed model has been illustrated considering a real data set 
and investigated the goodness of fit attained by the observed model via different test statistics and graphical 

methods. We have found that the proposed distribution provided a better fit and more flexible in comparison 

with some other lifetime distributions. 
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I. INTRODUCTION 
Last few years, it has been observed that the many life-time models have been generated but the real 

data sets related to engineering, life sciences, biology, hydrology, life testing, and risk analysis do not present a 

better fit to these distributions. So, the generation of new modified distributions appears to be necessary to deal 

with the problems in these fields. The generalized, extended, and modified distributions are created by inserting 

one or more parameters or making some transformation to the baseline distribution. Therefore, the new 

proposed distributions provide a better fit as compared to the existing models. 

The Poisson-Weibull distribution has introduced by [4] this extended family can have increasing and 

decreasing failure rate functions, also exponential Poisson (EP) distribution has introduced by [13] by 

compounding exponential distribution with zero truncated Poisson distribution with decreasing failure rate. The 
CDF of exponential Poisson distribution is, 
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While [3] have generated generalized exponential Poisson distribution having the decreasing or increasing or 

upside-down bathtub shaped failure rate, which is the generalization of the distribution proposed by [13] adding 

a power parameter to this model.  

Using the similar approach, [6] has presented a new distribution family also based on the exponential 

distribution with an increasing failure rate function known as Poisson exponential (PE) distribution. The CDF of 
PE distribution can be expressed as  
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Using the same approach as used by [6], [15] has introduced a two-parameter Poisson-exponential with 

increasing failure rate under the Bayesian approach. Alkarni and Oraby [1] have presented a new lifetime class 

with a decreasing failure rate which was obtained by compounding truncated Poisson distribution and a lifetime 
distribution. The CDF of the Poisson family is given by,  
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And its corresponding PDF can be expressed as 
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Where   the parameter is space and  ;G t  and  ;g t   are the CDF and PDF of any distribution. 

Employing same approach the Weibull power series class of distributions with Poisson has presented by [19]. 

Exponentiated Weibull–Poisson a new four-parameter distribution with increasing, decreasing, bathtub-shaped, 

and uni-modal failure rate have presented by [18] and it has generated by compounding exponentiated Weibull 

and Poisson distributions. Weibull–Poisson distribution is introduced by [16] having the shape of decreasing, 

increasing, upside-down bathtub-shaped, or uni-modal failure rate function. Further [10] have made an 

extensive study on Weibull–Poisson distribution through a reliability sampling plan. [14] has used the 

exponentiated exponential-Poisson as the software reliability model. [9] has presented Poisson exponential 

power distribution and used different estimation methods to estimate the model parameter.  

In this paper we have taken inverse Lomax distribution as a baseline distribution. The inverse Lomax (IL) 

distribution is one of important life-time distribution. The inverse Lomax distribution was introduced by [11] 

and used it to get Lorenz ordering relationship among ordered statistics. [12] showed that the  IL  distribution  
can  be  used  in  economics  and  actuarial  sciences.  The IL distribution has a lot of applications in stochastic 

modeling of decreasing failure rate life components, and life   testing. The CDF and PDF of two-parameter 

inverse Lomax can be expressed as 
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The main objective of this paper is to present a more flexible model by adding just one extra parameter 

to attain a better fit to the life-time data sets. The different sections of this paper have organized as follows; in 

Section 2 we present the Poisson inverted Lomax distribution with its statistical and mathematical properties. 

We broadly discussed the three well-known estimation methods namely maximum likelihood estimation (MLE), 

least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods in Section 3. In Section 4 

using a real dataset, we present the estimated values of the model parameters and their corresponding asymptotic 

confidence intervals and Fisher information matrix. Also, we have presented the different test criteria to assess 
the potentiality of the proposed model. Some concluding remarks are present in Section 5. 

 

II. THE POISSON INVERSE LOMAX (PIL) DISTRIBUTION 

We have generated the new distribution by using the Poisson-G family defined by [1]. The CDF and PDF of PIL 

distribution is obtained by using (1.1), (1.2), (1.3) and (1.4) and can be expressed as   
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The Survival /Reliability function of PIL distribution is   
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Hazard rate function of PIL distribution  

Let  x be life time of an item and we want the probability that it will not survive for an extra time dx  then, 

hazard rate function is, 
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 The curves of the probability density function and hazard function of PIL distribution are 

presented in Figure 1. It has been observed that the PDF of PIL distribution can have different variety of shapes. 

The hazard rate function (HRF) for the PIL distribution is also flexible due to its various shapes such as 

increasing, increasing–decreasing, reverse J-shaped for different values of parameters.  
 

 
Figure 1. Graph of PDF (left panel) and hazard function (right panel) for β = 1 and different values of α and λ. 

 

Quantile function of PIL distribution  

The quantile function is the inverse cumulative distribution function. 
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The quantile function of PIL distribution is 
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For the generation of the random numbers of the PIL distribution, we suppose simulating values of random 

variable X with the CDF (2.1). Let U denote a uniform random variable in (0, 1), then the simulated values of X 

are obtained by setting, 
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Skewness and Kurtosis:  

The Skewness and Kurtosis are used mostly in data analysis to study the shape of the probability distribution or 

data set, which can be calculated as follows, 
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The coefficient of kurtosis based on octiles given by (Moors, 1988) is 
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III. METHODS OF PARAMETER ESTIMATION 
To estimate the unknown parameters of the PIL distribution we have used three well-known estimation 

methods, which are listed below 

i. Maximum likelihood estimation methods  

ii. Least square estimation methods 
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iii. Cramer-Von-Mises estimation methods 

 

3.1. Maximum Likelihood Estimation (MLE) method 
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Equating to zero and solving these non-linear equations for t e un nown parameters  α  β  λ  we will obtain t e 

ML estimators of the PIL distribution. To solve them manually, one can used appropriate computer softwares 

like R, Mathmatica, Matlab etc. Let us denote the parameter vector by ( , , )    and the corresponding MLE 

of   as ˆ ˆˆ ˆ( , , )    , then the asymptotic normality results in, 
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In pra ti e  we don’t  now   hence it is useless that the MLE has an asymptotic variance   
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approximate the asymptotic variance by plugging in the estimated value of the parameters. where  B   is the 

Fis er’s information matri . Usin  t e Newton-Raphson algorithm to maximize the likelihood creates the 

observed information matrix and hence the variance-covariance matrix is obtained as, 

   
1

ˆ ˆˆ ˆ ˆv a r( ) c o v ( , ) c o v ( , )

ˆ ˆ ˆ ˆˆc o v ( , ) v a r( ) c o v ( , )

ˆ ˆ ˆ ˆˆc o v ( , ) c o v ( , ) v a r( )

B

    

     

    



 

 

  

 
 
 

 (3.1.2) 
Hence from the asymptotic normality of MLEs, approximate 100(1-α  %  onfiden e intervals for α  β and λ can 
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3.2. Method of Least-Square Estimation (LSE) 

The least-square estimators of the unknown parameters α  β and λ of PIL distribution can be obtained by 

minimizing  
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with respect to unknown parameters α  β and λ. 
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with respect to α  β and λ. 

 

Differentiating (3.2.2) with respect to α  β and λ we get, 
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Hence, the weighted least square estimators of α  β and λ respectively can be obtained by minimizing, 

 
   

 

2
2

1

1 2 1
; , , [1 e x p { (1 / ) } ]

1 1(1 )

n

i

i

n n i
D X x

i n i ne




    






  
      

    

 (3.2.3) 

with respect to α  β and λ. 

 

3.3. Method of Cramer-Von-Mises estimation (CVME) 

The Cramer-Von-Mises estimators of α  β and λ are obtained by minimizing the function 
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Differentiating (3.3.1) with respect to α  β and λ we get, 
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 simultaneously we will get the CVM estimators. 

 

IV. APPLICATION TO REAL DATASET 
In this section, we demonstrate the applicability of the PIL distribution using a real dataset used by former 

researchers. We have taken 100 observations on breaking the stress of carbon fibers (in Gba) [21]. 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 

3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 
3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 

3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 

1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65 

 

By employing the optim() function in R software [23] and [17], we have calculated the MLEs of PIL 

distribution by maximizing the likelihood function (3.1.1). We have obtained the value of Log-Likelihood is l = 

-141.7448. In Table 1 we  ave demonstrated t e MLE’s wit  t eir standard errors (SE) and 95% confidence 

interval for α  β  and λ. 

Table 1 
MLE and SE and 95%  onfiden e interval for α  β  and λ of PIL 

Parameter MLE SE 95% ACI 

alpha 4.1507 0.6198 (2.9358, 5.3655) 

beta 5.4091 1.3053 (2.8507, 7.9675) 

theta 80.5762 2.7868 (75.1142, 86.0383) 

 

The plots of profile log-li eli ood fun tion for t e parameters α  β and λ  ave been displayed in Fi ure 2 and 

noticed that the ML estimates can be uniquely determined. 

 

 
Figure 2. Graph of Profile log-li eli ood fun tion for t e parameters α  β and λ. 

 

In Figure 3 we have plotted the Q-Q plot and P-P plot and it is seen that the proposed distribution fits the data 

very well.  
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Figure 3. The Q-Q plot (left panel) and P-P plot (right panel) of the PIL distribution. 

 
In Table 2 we have presented the estimated value of the parameters of PIL distribution using MLE, LSE and 

CVE method and their corresponding negative log-likelihood, and AIC criterion.  

  

Table 2 

Estimated parameters, log-likelihood, and AIC 

Method of 

Estimation 
̂  ̂  ̂  -LL AIC 

MLE 4.1507 5.4091 80.5762 141.7448 289.4897 

LSE 4.5765 4.5417 73.5387 141.9825 289.9650 

CVE 4.7818 4.5785 92.7248 142.2249 290.4497 

 

In Table 3 we have presented The KS, W and A2 statistics with their corresponding p-value of MLE, LSE and 

CVE estimates. 

Table 3 
The KS, W and A2 statistics with a p-value 

Method of 

Estimation 
KS(p-value) W(p-value) A

2
(p-value) 

MLE 0.0790(0.5608) 0.09718(0.6002) 0.5028(0.7435) 

LSE 0.0642(0.8048) 0.0843(0.6683) 0.5323(0.7137) 

CVE 0.0665(0.7677) 0.0899(0.6373) 0.6153(0.6332) 

 

 
Figure 4. The Histogram and the density function of fitted distributions (left panel) and Q-Q plot (right panel) 

of estimation methods MLE, LSE and CVM. 
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In this section, we have presented the applicability of Poisson Gompertz distribution using a real dataset used by 

earlier researchers. To compare the potentiality of the proposed model, we have considered the following four 

distributions. 

 

A. Exponential power (EP) distribution: 

The probability density function Exponential power (EP) distribution [24] is 

   1
( ) e x p 1 ; ( , ) 0 , 0

x x

E Pf x x e e x

 
  

   
  

    
 

. 

w ere α and λ are t e s ape and s ale parameters  respe tively. 

 

B. Lindley-Exponential (LE) distribution: 
The probability density function of LE [5] can be expressed as 

    
2

1

( ) 1 1 ln 1 ; , > 0 , 0
1

x x x

L E
f x e e e x
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  
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  

 
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 

 

C. Gompertz distribution (GZ): 

The probability density function of Gompertz distribution [20] wit  parameters α and θ is 

   1 0 0
x x

G Zf x e exp e ; x , , .
 

  


 
         

 

 

D. Generalized Exponential (GE) distribution 

The probability density function of generalized exponential distribution [8] 

     
1

1 ; 0 0
x x

G Ef x ; , e e , , x


 
     


 

    . 

 
For the assessment of the potentiality of the proposed model, we have calculated the Akaike information 

criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (CAIC), and 

Hannan-Quinn information criterion (HQIC) which are presented in Table 2.  

 

Table 2 

Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PIL 141.7448 289.4897 297.3052 289.7397 292.6528 

LE 143.2473 290.4946 295.7049 290.6183 292.6033 

EP 145.9589 295.9179 301.1282 296.0391 298.0266 

GE 146.1823 296.3646 301.5749 296.4883 298.4733 

GZ 149.1250 302.2500 307.4604 302.3737 304.3588 

 

The Histogram and the density function of fitted distributions and Empirical distribution function with the 

estimated distribution function of PIL distribution and some selected distributions are presented in Figure 4. 
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Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution 

function with estimated distribution function (right panel). 

 

To compare the goodness-of-fit of the PIL distribution with other competing distributions, we have 

presented the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises 

(CVM) statistics in Table 3. It is observed that the PIL distribution has the minimum value of the test statistic 

and higher p-value thus we conclude that the PIL distribution gets quite better fit and more consistent and 

reliable results from others taken for comparison. 

Table 3 
The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PIL 0.0790(0.5608) 0.09718(0.6002) 0.5028(0.7435) 

LE 0.0838(0.4836) 0.1225(0.4860) 0.7042(0.5549) 

EP 0.0993(0.2771) 0.1861(0.2963) 1.3081(0.2297) 

GE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581) 

GZ 0.0962(0.3129) 0.2280(0.2193) 1.7537(0.1261) 

 

V. CONCLUDING REMARKS 
In this study, we have presented a new distribution called Poisson inverse Lomax distribution. A 

comprehensive study of some statistical and mathematical properties of the proposed distribution including the 

derivation of explicit expressions for its reliability function, survival function, hazard function, the quantile 

function and skewness and kurtosis. Three well-known estimation methods namely maximum likelihood 

estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods are used 

for the parameter estimation and we found that the MLEs are relatively good than LSE and CVM methods. The 

curves of the PDF of the proposed distribution have shown that its shape is increasing-decreasing and right 

skewed and flexible for modeling real-life data. Also, the graph of the hazard function is monotonically 

increasing or constant or reverse j-shaped according to the value of the model parameters. The applicability and 

suitability of the proposed distribution has been evaluated by considering a real-life dataset and the results 

exposed that the proposed distribution is much flexible as compared to some other fitted distributions. 
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