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Abstract  
In this paper, we analyse the effect of reweighting edges of reconstruction losses when learning node embedding 

vectors for nodes of a graph with graph auto-encoders. The analysis regards the usage of the node embedding 

vectors for the link prediction problem. We show that link prediction results are quite insensitive to edge 

reweighting, with the exception of very unbalanced reconstruction losses. We also show that training models 

from perfectly balanced reconstruction losses might sometimes be sub-optimal.  
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I. INTRODUCTION 

The research activity related to the development of machine learning methods for graph (a.k.a. 

network) data has grown at a fast pace over the past few years [1]. It became one the most active and intriguing 

sub-areas of deep learning [2, 3, 4]. Among others, several researchers constructed different graph neural 

network [3, 5, 6] architectures to learn node embeddings [1, 2, 3, 4]. A node embedding is a vector space learnt 
from a graph neural network (in general), in which the nodes from a given graph are represented by some 

vectors. The similar nodes in the graph will have close vectors in the space. Using a node embedding instead of 

using a graph linking the nodes can be useful to solve machine learning problems involving the nodes [1, 2, 3, 4, 

6, 7]. However, a majority of these graph neural networks must be trained in a supervised way. Indeed, 

researchers will often update the parameters of these neural networks by minimizing a loss that involves labels 

on each node or on a subset of nodes [1, 3, 6]. This is limiting, as such labels are sometimes unavailable. 

During the last five years, graph auto-encoders [7] became efficient methods extending graph neural 

networks to learn a node embedding but in an unsupervised way. Instead of using node labels, graph auto-

encoders optimize a reconstruction loss that must be computed from the connected node pairs (the edges) and 

non-connected node pairs of the graph. The loss will decrease if the graph auto-encoder can correctly predict, 

using the node embedding, which node pairs are connected and not connected in the original graph. In other 

words, we assess the quality of the embedding by check if, starting from this space, it is possible to output a 
reconstructed graph that is quite similar to the true data. Graph auto-encoders (and their derivatives, as graph 

variational auto-encoders [7]) have been recently used to deal with a wide range of research problems. Some 

famous examples are: link prediction [7, 8, 9, 10, 11], node clustering [12, 13, 14] and generating some small 

graphs such as molecules [15, 16, 17]. Some papers also showed that graph auto-encoders give interesting 

results for very large graphs with several millions of nodes [18, 19]. 

Many graphs being sparse, researchers almost always reweight the edges in the reconstruction loss, 

with respect to the non-connected node pairs which are more numerous. Most codes simply set a positive edge 

reweighting scalar parameter in the reconstruction loss. A deep experimental analysis of the effect of this 

reweighing on the node embedding is missing. In this paper, we conduct and report the results of such an 

analysis. For experiments, we focus on the usage of the node embedding vectors to address the link prediction 

task [20], because this is the most common task to assess the quality of graph auto-encoders. Our analysis shows 
that the link prediction results are quite insensitive to unbalanced reconstruction losses, with the exception of 

extreme cases. Our analysis also tends to show the interest of keeping a quite balanced loss as well as the 

interest of slightly overweighting edges with respect to non-connected node pairs, on some of our graphs. A 

preprint version of this paper is available online on TechRxiv [24]. 

 

II. METHODS 

We have an undirected graph         with     nodes and     edges. We summarize   by the 

adjacency matrix   of dimension           which is defined as:       if the node pair       is connected by 

an edge (        ) and       otherwise. We want to give to each node   a vector    of dimension   <     
in a node embedding space  . Also, in next paragraphs,   will be the matrix of size       inside which the 

row n°  will correspond to the vector   . 
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A graph auto-encoder [7] is an unsupervised model with an encoder and a decoder. The encoder is a 

parametrized function ; in modern research this function will be a graph neural network [3, 5, 6]. Its input is   

and its output is  . In our experiments, we will follow the first works of Kipf and Welling [6, 7] and our encoder 

will thus be a 2-layer graph convolutional network: 

 

                           . 

Here: 

    the normalized version of the adjacency :                    
    , with   the degree matrix of 

  +      (     is the identity matrix of dimension          ), 

                 , 

    an             weight matrix and    another             weight matrix (to learn). 

Kipf and Welling [7] set            and     , and we will choose similar dimensions in our experiments. 

Once the matrix   (the node embedding vectors) is computed, the decoder will reconstruct an approximate 

version of  , named    and of dimension          , as follows: 

 

                         
      

 

       
   

   
 

    
             

   
            

 

Intuitively, the node embedding vectors in   will be of “good quality” if the reconstructed matrix    is 
equal or very close to the true initial data  . So, researchers train the graph auto-encoder by gradient descent to 

minimize a reconstruction loss [7]: 

 

                       
 

    
                                                    . 

 

Kipf and Welling [7] set: 

 

                                               . 

 

We note the presence of an edge reweighting scalar parameter   (usually      in 

                     . Indeed, many graphs being sparse, researchers felt the need to positively reweight the 

edges in the reconstruction losses, with respect to the non-connected node pairs which are more numerous 

(          vs    ). For instance, Kipf and Welling [7] set    
         

   
 and this choice means that the 

“positive” (edges) and “negative” (non-connected node pairs) parts of the reconstruction loss have the same 

relative importance. 

 

However, the choice of   and the effect of edge reweighting on the node embedding has not been 

deeply studied. Existing research set the value of   in one line of code, without further study. In the next two 

sections of the paper, we conduct and report the empirical results of such a study, focusing on link prediction 

applications. Our objective is to assess the effect of setting: 

 

       
         

   
, 

 

for different values of the scalar parameter     . Setting     leads to an artificially balanced 

reconstruction loss (as before), while setting     will underweight edges with respect to non-connected node 

pairs and setting     will overweight edges with respect to non-connected node pairs. 

 

III. EXPERIMENTAL DESIGN 

For evaluation, we follow the experimental procedure of previous papers [7, 8, 9, 10, 11, 18, 19] and do 

link prediction. The goal is to assess, for different values of    our performance at predicting if two nodes   and 

  from the original graph are connected by an edge       or not, only by using the learnt node embedding 

vectors    and    and the associated reconstructed cell     . We will report results on the three citation networks 

Cora, Citeseer and Pubmed (we refer to [6] for more details), whose statistics are available in Table 1. These 

three graphs are very relevant for our study, because they are commonly used, and because they are very sparse 

and thus will all require the tuning of an edge reweighting scalar parameter   to return good results. 
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Table 1: Statistics of the Cora, Citeseer and Pubmed citation networks 
Graph Number of nodes Number of edges 

Cora 3 327 4 732 

Citeseer 2 708 5 429 

Pubmed 19 717 44 338 

 

More precisely we will train several graph auto-encoders on some masked versions of the original 

graph data, with only 85% of edges. Among the missing edges, 5% are put in a validation set and 10% and put 

in a test set, together with the same number of non-connected pairs of nodes (selected randomly). These 

numbers are on par with previous papers. Are we able to retrieve the missing edges in the test set? This is 

actually a classification problem, that we will evaluate using the following two metrics: 

 AUC: Area Under the receiver operating characteristic Curve [21]. 

 AP: Average Precision score [22]. 

We chose to train all the models using the ADAM algorithm [23] with a learning rate of 0.01, for 200 

epochs of training and with            and      (as explained in II). For the Pubmed graph, which is 

larger than Cora and Citeseer, we used the FastGAE code from [19] for faster evaluations. 

 

IV. RESULTS 

Table 2 shows our results on the three graphs Cora, Citeseer and Pubmed. All the AUC and AP scores 

are in percentage and are averaged over 20 trainings of the graph auto-encoder model, and we also present the 

corresponding standard deviations over all these different trainings (to account for the volatility due to the 

randomness in edge masking). We tested a wide range of values for the parameter  . As explained in II, setting 

    is equivalent to a balanced reconstruction loss, whereas setting     will underweight edges with 

respect to non-connected node pairs and setting     will overweight edges with respect to non-connected 

node pairs. 

 

Table 2: Link prediction results (on test sets) for the Cora, Citeseer and Pubmed citation networks 

 

 

 

Foremost, we see in Table 2 that the Area Under the ROC Curve and the Average Precision link 

prediction scores on the test sets are quite insensitive to the choice of   in the graph auto-encoder reconstruction 

loss, with the exception of extreme values (                 or      ). For all other values of   we reach 

scores that are quite close to the scores of the balanced reconstruction loss with    . Another result from our 

experimental analysis is that: fine-tuning   (particularly to oversample the edges with respect to the non-

connected node pairs) can sometimes very slightly improve the results. In Table 2, for the Cora graph and for the 

Citeseer graph, choosing        and       , respectively, is optimal. Ultimately, we know that the 

standard deviations of our studies are quite large and that differences are not necessarily expressive ; yet, we see 

that selecting   around 1 decreases the scores volatilities with respect to very unbalanced reconstruction losses. 

Future works on larger graphs could be necessary to really confirm our results on the advantage of    . 

 

 

Value of   

Link prediction results (in percentage) 

Cora Citeseer Pubmed 

AUC AP AUC AP AUC AP 

0.001 52.2   2.2  52.3   2.2 51.9   2.8 52.1   2.8 55.3   2.8 55.5   3.2 

0.01 84.1   1.3  86.6   1.2 78.0   2.2 81.4   2.3 73.8   2.6 77.2   3.2 

0.1 84.5   0.9 88.2   0.9 78.1   1.9 83.7   1.5 82.4   0.7 86.2   0.5   

0.25 84.8   0.8 88.2   0.8 78.1   1.5 83.7   1.5 83.3   0.6 86.9   0.4 

0.5 84.8   0.8 88.3   0.8 78.2   1.6 83.7   1.3 83.7   0.5 87.2   0.3 

0.75 84.9   0.8 88.3   0.8 78.2   1.4 83.8   1.2 83.7   0.4 87.1   0.3 

0.90 84.8   0.8 88.1   0.6   78.3   1.6 83.8   1.2 83.8   0.3 87.1   0.3 

0.95 84.8   0.7 88.2   0.6 78.3   1.2 83.8   1.0 83.8   0.5 87.1   0.3 

1 84.9   0.7 88.4   0.6 78.4   1.2 83.8   1.1 83.9   0.4 87.4   0.3 

1.05 84.9   0.7 88.3   0.6 78.8   1.2 83.9   1.2 83.8   0.5 87.2   0.3 

1.10 84.8   0.8  88.4   0.5 78.2   1.5 83.9   1.2 83.7   0.4 86.8   0.3  

1.25 85.0   0.8 88.4   0.7 78.1   1.3 83.8   1.6 83.6   0.5 86.8   0.3 

1.50 84.9   0.9 88.3   0.8 77.5   1.2 83.2   1.5 83.4   0.4 86.7   0.3 

1.75 84.7   1.2 88.3   0.9 77.5   1.4 82.7   1.3 83.4   0.4 86.7   0.3 

2.0 84.1   1.3 87.6   1.3   77.5   1.6 82.5   1.3 83.0   0.4 86.5   0.3 

5.0 83.6   1.4 86.8   1.2 77.4   2.0 82.5   1.6 82.9   0.4 86.2   0.3 

10. 81.4   1.4 85.0   1.3 77.1   2.2 81.9   2.1 81.9   0.5 85.2   0.4 

100 75.1   2.1 77.4   2.2 70.4   2.3 74.1   2.1 71.1   0.6 75.6   0.6 

1000 66.5   2.2 70.2   2.1 65.5   2.3 70.0   2.0 70.1   0.9 75.5   0.7 
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V. CONCLUSION  

As many graphs are sparse, researchers often positively reweight the edges of their reconstruction 

losses when training graph auto-encoders models, with graph neural network encoders and inner product 

decoders. However, a deep experimental analysis of the effect of this reweighing on the model was missing. In 

this paper, we reported and commented the results of such an analysis. We focused on the usage of graph auto-

encoders for link prediction on three popular citation networks. We showed that the link prediction 

performances are quite insensitive to unbalanced reconstruction losses, with the exception of extreme values. 

We also explained the potential interest of keeping a quite balanced loss as well as slightly overweighting edges 

with respect to non-connected node pairs, in terms of optimal scores and of reduced standard deviations. Future 

studies will try to confirm our results on variants of graph auto-encoders, such as graph variational auto-

encoders (preliminary experiments are conclusive) as well as on different graph datasets. 
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