Identification of Three Isolate Fungal To Produce Agarwood Sapwood on *Gyrinops Versteegii (Gilg.)* Domke Plant By Molecular Analysis

I M. Mega^{1*)}, I N. Rai¹⁾, I M. Adnyana¹⁾, I M. Sudana¹⁾, and N.L. Kartini¹⁾

1) Faculty of Agriculture, Udayana University, Jl. P.B. Sudirman, Denpasar, Bali, Indonesia

Abstract

Agarwood sapwood is one of the non-timber forest products (NTFPs) that have economic value and as an export commodity. This product usually used as a raw material for cosmetics, perfume, incense, and medicines. The production of agarwood sapwood influenced by the type of agarwood-producing plants, the type of microbial induction, and environmental factors. One of the microbial inducing agarwood-producing plants is fungi. Several studies suggested that Fusarium, Rhizopus, and Trichoderma fungi can assist in the formation of agarwood sapwood in the Gyrinops versteegii plant, but the species of fungi is unknown. This study aims to identify three isolates that produce agarwood sapwood on the Gyrinops versteegii plant in Bali. The fungi Identification is using molecular analysis. Fungi isolates were analyzed based on internal transcribed spacer (ITS) sequences in the ribosome DNA area by PCR technique using universal primers ITS-1 and ITS-4. The results showed that the fungi species helped in the formation of agarwood sapwood were: Fusarium solani, Rhizopus microsporus, and Trichoderma harzianum.

Keyword: fungi species, agarwood sapwood, Gyrinops versteegii, PCR

Date of Submission: 04-09-2020

Date of acceptance: 19-09-2020

I. INTRODUCTION

Agarwood sapwood is a product in the form of solid mass brownish-black color to black color with fragrant scent found in the woods or roots of host tree plants (example *Aquilaria sp*). The wood part has undergone a process of physical and chemical changes due to infection by specific fungi [5].

Agarwood is one of the non-timber forest product commodities (NTFPs) with high economic value and an export commodity, as well as a good source of income for the community [11]. Agarwood which has been exported to Saudi Arabia from January to June 2016 was more than 10 tons with a value of more than IDR 28 billion. Furthermore, PT Idaman Polanusa recorded an agreement to supply 100 tons of agarwood for a year to Saudi Arabia [13]. Furthermore, the government has declared that agarwood to be a national non-timber forest product commodity to be developed on a broader scale [16]. The high number of agarwood sapwood demand from abroad is due to the many benefits of agarwood such as perfumes, cosmetics, medicines, and religious ritual purposes [1].

The production of agarwood sapwood is influenced by various factors, such as the genetics of agarwood-producing trees, microbial inductions, the environment, and the duration of the sapwood formation process. Agarwood sapwood can occur when certain pathogens infect agarwood-producing trees. The response of trees to the pathogen attack is the production of secondary metabolites or resin compounds in which produce fragrance when agarwood sapwood is burned [18].. The results of Mega and Phabiola's research (2010), revealed that the fungi species Fusarium sp and Rhizopus sp. causes the formation of agarwood sapwood in the Gyrinops versteegii plant. Putri et al. (2016), showed that agarwood-producing plants inoculated with fungi produced 1.1% higher resin content than non-inoculated plants. Furthermore, the study results of Budi et al. (2010) showed that four Fusarium species that induced Aquilaria spp plants, namely: F. Solani (Mart) Appel & Wollenw, F. Lateritium Ness, F. Tricinotium (Corda) and F. moniliformae Sheldon. Sangareswari et al (2016) reported that several fungi species naturally infecting agarwood-producing plants at various places in India such as Aspergillus, Lasiodiploidia, Chaetomium, Fusarium, and Penicillium. Furthermore, Mega et al (2015) found that the liquid inoculant mixture of Fusarium solani and Rhizopus sp. successfully inoculated the agarwood plant (Gyrinops versteegii) for 16 months and produced agarwood sapwood with a resin content of 13.58%. Chhipa and Kaushik (2017) revealed that Trichoderma fungi were found dominant in the Aquilaria malacensis stem. Mega and Nuarsa (2018) study showed that three types of fungi can help in the formation of agarwood sapwood, namely Fusarium solani, Rhizopus sp., and Trichoderma sp. This study used two indicators, such as the color of the wood (changing from white to brown to blackish-brown) and resin levels (5.24% (Rhizopus fungi), 5.31% (Fusarium fungi), 7.92% (Trichoderma fungi)). The three fungi isolates were observed macroscopically, so it needs further identification by another method. This study will use the molecular analysis method by using the DNA approach of each fungus. This analysis will show the species of fungi isolates.

Based on no certainty and exact species of fungi isolates on agarwood sapwood *Gyrinops versteegii plant*, it is necessary to research the identification of fungi isolates on agarwood sapwood molecularly.

2.1 Tools and Materials

II. RESEARCH METHOD

The tools used in this study were erlenmeyer, scales, bunsen lamps, petri dishes, micropipettes, autoclaves, laminar airflow, scissors, stoves, pans, spoons, filters, measuring cups, plastic bags, masks, labels, stationery, ruler, camera, laptop, oose needle, cork borer, microscope, optic lab, PCR (Polymerase Chain Reaction), Eppendorf, vortex, centrifugation, electrophoresis, and ultraviolet transilluminator.

Materials used in this study were isolated fungi *Fusarium sp.* (isolate-1), fungi *Rhizopus sp.* (isolate-2), and *Trichoderma sp.* (isolate-3). Isolate-1 and isolate-2 isolated on agarwood trees in Pupuan District, Tabanan Regency. However, isolate-3 isolated at a garden area in Baturiti District, Tabanan Regency. Also, another supporting material was used such as distilled water, 70% alcohol, 0.5% Clorox, PDA media, NA media (nutrient agar), liquid nitrogen, CTAB buffer, TE buffer, ITS1 primer, ITS4 primer, mercaptoethanol, sodium acetate, isoamyl alcohol, and ethanol (70%).

2.2 Molecular Identification

DNA extraction follows the procedure of Doyle and Doyle (1987). Samples of 0.2 g of mycelium fungi (pathogens) were crushed with liquid nitrogen and pathogenic fungal powders were inserted into the Eppendorf tube. Next, 500 μ L of CTAB buffer and 50 μ L β -mercaptoethanol was added, then mixed until homogeneous with the vortex. For lysis of cell walls, heat the lysis sample with a temperature of 70°C for 60 minutes, every 10 minutes, swing the lysis sample back and forth to speed up the lysis process. Then cooled it down to room temperature. Subsequently, 500 μ L of isoamyl alcohol (24: 1) chloroform added to the tube and then mixed until homogeneous with vortex and centrifuged at 12,000 rpm for 15 minutes. The obtained supernatant then transferred to a new Eppendorf tube by adding 500 μ L sodium acetate mixed to homogeneous with vortex and centrifuged at 12,000 rpm for 15 minutes. The obtained supernatant then added sodium acetate and isopropanol each 500 μ L, mixed until homogeneous with vortex and centrifuged again at 12,000 rpm for 10 minutes. The tube was shaken slowly to bind the DNA then incubated at -20°C for 30 minutes. The DNA strands result were deposited for sedimentation by centrifugation for 10 minutes. The supernatant removed, washed the pellet with ethanol (70%) then centrifuged at 8,000 rpm for 5 minutes. Discard the ethanol then dried the pellets. The pellets were resuspended with 50 μ L of the TE buffer and stored it at -20°C for further use at the DNA amplification process.

2.3 DNA Amplification

DNA amplification was performed on a Thermo Cycle PCR machine. Amplification was performed using universal primers to detect the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), namely forward primer ITS1 (5'- CTTGGTCATTTAGGAAGTAA-3 ') and reverse primer ITS4 (5'-TCCTCCGCTTATTGATATGC-3') with the target size amplification was 490 bp (Doyle & Doyle, 1987). DNA amplification reactions carried out with a total volume of 25 μ L consisting of 1 μ L DNA, 2.5 μ L buffer 10 x and Mg2 +, 0.5 μ L dNTP 10 mM, 1 μ L each primer, 12.5 μ L Taq DNA (10 units / μ L), and 9.5 μ L H2O. The amplification conditions divided into several stages, namely 94 °C pra-denaturation for 3 minutes, followed by 30 amplification cycles, each cycle consisting of DNA / DNA 94 °C denaturation separation for 1 minute, primary attachment/annealing 45 °C for 1 minute, DNA synthesis 72 °C for 2 minutes. Especially for the last cycle plus the synthesis stage for 10 minutes, then the cycle will end at 4°C.

2.4 DNA Electrophoresis

The amplified product analyzed using Blued electrophoresis with 1% agarose gel (0.5xTris-Borate EDTA / TBE). Electrophoresis carried out at 100 volts for 28 minutes, then agarose gel incubated in dyecontaining ethidium bromide (1%) for 15 minutes, then washed with H2O for 10 minutes. Electrophoresis results visualized with an ultraviolet transilluminator. DNA bands formed on the results of the electrophoresis documented with a digital camera.

2.5 Analysis of DNA Sequences

The amplification product delivered to the 1st Base (Malaysia) for nucleotide tracking. The sequencing results analyzed using the basic local alignment search tool (BLAST) program with an optimization program to obtain DNA base sequences that have homology with DNA sequences published at the National Center for

Biotechnology Information (NCBI) website. The nucleotide sequences result then analyzed using *ClustalW* multiple alignments in the Bioedit sequence alignment editor software version-7.0.5. Homology results close to 100% similarity categorized as the same species as the sample species.

III. RESULT AND DISCUSSION

3.1 Fusarium solani

DNA fragments of 650 pb were successfully amplified from 3 fungal samples using an ITS1 / ITS4 universal primer (Figure 1). The amplified DNA sample and then used for the sequencing stage to confirm the fungal species. Sequencing analysis confirmed that the identity of the fungus sample 1 was *Fusarium solani* with 95-97% homology in succession to several *Fusarium solani* isolates in genebank (Table 1).

Figure 1. Visualization of Fungal DNA results from amplification using universal ITS1 / ITS4 primers on 1% agarose gel. M: DNA marker (1kb ladder); Sample no. 1 (isolate 1), 2 (isolate 2) and 3 (isolate 3).

🖹 🗧 🔀 NCBI Blast:Nucleotide S 🗙 🖉 Fusarium solani isolate RM : M Inbox (4) - dewanggaselang + 🗸 🗖														٥	×
\leftarrow	→ C) ŵ A	https://blast.ncbi.	nlm.nih.go	v/Blast.cgi							□ ☆	¢= L.	Ŕ	
	Dese	criptions	Graphic Sum	mary	Alignments	Taxonomy							_		^
Sequences producing significant alignments Download × Manage Columns × Show 100 • 0														ł	
		select all 100) sequences selecte	ed				Gen	Bank	Graph	ics [Distance	tree of results		
					C	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession		1
		Uncultured fun	gus clone JIFE_29c	#1_2012 :	small subunit ribosom	al RNA gene, partial s	equence; internal transcribed spacer 1, 5.8S ribosoma	195	371	36%	4e-45	97.37%	MF510752.1		
		Fusarium solar	ni isolate HL12 18S	ribosomal	RNA gene, partial se	quence; internal transc	ribed spacer 1, 5.8S ribosomal RNA gene, and international states and international states and	195	371	36%	4e-45	97.37%	KP267135.1		
		Fusarium oxys	porum isolate ACSI	KS_21021	85 internal transcribe	<u>d spacer 1, partial seq</u>	uence: 5.8S ribosomal RNA gene and internal transcri	193	382	36%	1e-44	90.00%	MN583405.1		
	 ✓ 	Fusarium solar	ni strain TRXY-47-2-	1 internal	transcribed spacer 1.	partial sequence; 5.85	Fribosomal RNA gene, complete sequence; and interr	193	369	36%	1e-44	95.80%	KP204436.1		
		Uncultured fun	gus clone ASSC075	5 internal t	ranscribed spacer 1, j	partial sequence: 5.8S	ribosomal RNA gene, complete sequence; and interna	193	369	36%	1e-44	95.80%	<u>JQ081778.1</u>		
		Fusarium solar	ni isolate RM small :	subunit rib	osomal RNA gene, pa	artial sequence; interna	Il transcribed spacer 1, 5.8S ribosomal RNA gene, and	189	371	36%	2e-43	96.49%	MN978925.1		
	✓	[Neocosmospo	ora] tonkinensis isola	ate 21B int	ernal transcribed spa	cer 1, partial sequence	5.8S ribosomal RNA gene and internal transcribed s	189	371	36%	2e-43	96.49%	MK752428.1		
	 ✓ 	Fusarium solar	ni culture MUT <ita< td=""><td>≥:6233 inte</td><td>ernal transcribed space</td><td>er 1, partial sequence;</td><td>5.8S ribosomal RNA gene and internal transcribed sp</td><td>189</td><td>371</td><td>36%</td><td>2e-43</td><td>96.49%</td><td>MN962642.1</td><td></td><td></td></ita<>	≥:6233 inte	ernal transcribed space	er 1, partial sequence;	5.8S ribosomal RNA gene and internal transcribed sp	189	371	36%	2e-43	96.49%	MN962642.1		
		Fusarium cf. so	olani isolate Cs1 sm	all subunit	ribosomal RNA gene	, partial sequence; inte	ernal transcribed spacer 1 and 5.8S ribosomal RNA ge	189	371	36%	2e-43	96.49%	MN698739.1		
	 ✓ 	Fusarium solar	ni isolate P. polyphy	lla var.yun	nanensis1 internal tra	nscribed spacer 1, par	tial sequence; 5.8S ribosomal RNA gene and internal	189	371	36%	2e-43	96.49%	MN689717.1		
	 ✓ 	Fusarium solar	ni strain CFE-136 in	ternal tran	scribed spacer 1, par	tial sequence; 5.8S rib	osomal RNA gene and internal transcribed spacer 2, o	189	371	36%	2e-43	96.49%	MN686307.1		
	✓	Fusarium solar	ni strain CFE-121 in	ternal tran	scribed spacer 1, par	tial sequence; 5.8S rib	osomal RNA gene and internal transcribed spacer 2, o	189	371	36%	2e-43	96.49%	MN686306.1		
	✓	Fusarium solar	ni strain CFE-116 in	ternal tran	scribed spacer 1, part	ial sequence; 5.8S rib	osomal RNA gene and internal transcribed spacer 2, c	189	371	36%	2e-43	96.49%	MN686304.1		
	Image: Second	Fusarium solar	ni strain CFE-115 in	ternal tran	scribed spacer 1, part	ial sequence; 5.8S rib	osomal RNA gene and internal transcribed spacer 2, c	189	371	36%	2e-43	96.49%	MN686303.1		_
		Fusarium phas	eoli strain CFE-108	internal tr	anscribed spacer 1, p	artial sequence; 5.8S	ribosomal RNA gene and internal transcribed spacer 2	189	371	36%	2e-43	96.49%	M 🗐 <u>Fee</u>	dbacl	k –
	, Р Sti	tart your search	F OFF 00.		0	📙 🗘 🚺	e 4	120	274	269/	20.42	06 409/	へ 100 9°10 へ 100 2/13) PM /2020	
			htt	ps://ł	olast.ncbi.i	ılm.nih.go [,]	v/Blast.cg								

Sikuen	Fusarium _solani	KP267135 _CHI	MN978925 _PAK	MN962642 _ITA	MN698739 _IND	MN686302 _IND	MN658459 _CHI	MN653387 _RUS	MN637860 _CHI	MN634542 _SOA	AF130378 _Fusarium _dimerum
Fusarium_solani	ID	95%	96%	95%	96%	97%	97%	95%	95%	95%	44%
KP267135_CHI	95%	ID	96%	100%	97%	97%	97%	100%	100%	100%	44%
MN978925_PAK	96%	96%	ID	97%	97%	97%	97%	97%	97%	97%	44%
MN962642_ITA	95%	100%	97%	ID	98%	97%	97%	100%	100%	100%	44%
MN698739_IND	96%	97%	97%	98%	ID	99%	99%	98%	98%	98%	44%
MN686302_IND	97%	97%	97%	97%	99%	ID	100%	97%	97%	97%	44%
MN658459_CHI	97%	97%	97%	97%	99%	100%	ID	97%	97%	97%	44%
MN653387_RUS	95%	100%	97%	100%	98%	97%	97%	ID	100%	100%	44%
MN637860_CHI	95%	100%	97%	100%	98%	97%	97%	100%	ID	100%	44%
MN634542_SOA	95%	100%	97%	100%	98%	97%	97%	100%	100%	ID	44%
AF130378_ Fusarium_ dimerum	44%	44%	44%	44%	44%	44%	44%	44%	44%	44%	ID

Table 1. Homology (%) of the nucleotide sequence of Fusarium solani isolates with several isolates that
have been reported in GenBank

0.01

Figure 2. Phylogenetic analysis of *Fusarium solani* isolates based on the alignment of the partial nucleotide sequences of DNA-A using Mega 6.06 (Neighbor-Joining Algorithm with 1,000 bootstraps

The phylogenetic analysis result showed that *Fusarium solani* isolates formed two-groups. *Fusarium solani* isolates from Bali, formed a group with 4 isolates from genebank, such as Indian isolates (MN698739), Chinese isolates (MN658459), Indian isolates (MN686302), and Pakistan isolates (MN978925). And the other group consists of 5 isolates from genebank, such as Chinese isolates (KP267135), Italian isolates (MN962642), Russian isolates (MN653387), South African isolates (MN634542), and Chinese isolates (MN637860). *Fusarium dimerum* isolate (AF130378) used as a comparison and categorized as an outgroup isolate (Figure 2). Nugraheni *et al* (2015) revealed that the three fungi isolate induced *Gyrinops versteegii* in West Nusa Tenggara, with PCR molecular identification (primary ITS) belonged to the *Fusarium solani* species. *Fusarium solani* was also found to be associated with Aquilaria spp. in Nunukan Regency, North Kalimantan [10].

3.2 Rhizopus microsporus

DNA fragments of 650 bp were successfully amplified from 3 fungal samples using an ITS1 / ITS4 universal primer (Figure 1). The amplified DNA sample used for the phase of sequencing to ascertain the fungus species. Sequencing analysis confirmed that the fungus that sampled 2 was *Rhizopus microsporus* with 98-100% homology in succession to several *Rhizopus microsporus* isolates in genebank (Table 2).

0.01

Figure 3. Phylogenetic analysis of *Rhizopus microsporus* isolates based on the alignment of the partial nucleotide sequences of DNA-A using Mega 6.06 (Algorithm Neighbor-Joining with 1,000 bootstraps

Further phylogenetic analysis showed that isolates of *Rhizopus microsporus* formed two groups. Rhizopus microsporus isolates from Bali categorize as a group with 6 other isolates from genebank, such as Indian isolates (KF710005), United States isolates (KU729104), Chinese isolates (KR998045), Chinese isolates (EF151442), Indonesian isolates (AB894627), and Indian isolates (MK396495). While the second group consisted of 4 isolates from genebank including Chinese isolates (DQ641312), Chinese isolates (DQ641311), (AY803941), Japanese isolates Japanese isolates and (AY803929). As outgroup isolates, Phycomyces blakesleeanus (JN206308) isolates used as a comparison (Figure 3). Schwertz et al. (1997) found the Rhizopus microsporus var. oligosporus as a fermentation agent in tempeh in Bali. Dewi and Aziz (2011) revealed that the results of isolation of fungi in fermented soybean patty at Central Java were Rhizopus microsporus, while fungi Rhizopus sp. could infect agarwood-producing plants from Gyrinops versteegii in Tabanan [6].

6 8	🖷 M Inbox (4) - dewanggaselang 💈 NCBI Blast.Nucleotide S 🗴 + 🗸 – 🗇													٥	×					
← -	\rightarrow	Ŭí	ດີ	A https://bl	ast.ncbi.nlm	.nih.gov/B	last.cgi										☆	1 1	l B	
	D	escript	ions	Graphi	: Summai	ry	Alignments	Та	xonomy											^
	Sequences producing significant alignments Download Manage Columns Show 100 • 0														÷					
		selection	tall 1	00 sequences	selected								Gen	<u>Bank</u>	<u>Graph</u>	iics D	listance t	ree of resul	<u>ts</u>	
								Descriptio	n				Max Score	Total Score	Query Cover	E value	Per. Ident	Accession	1	1
		Rhiz	opus mi	icrosporus stra	in SMM4 si	mall subur	nit ribosomal RN/	gene, par	rtial sequence	e; internal transcribed	spacer 1, 5.8S ribosom	al RNA g	691	691	99%	0.0	84.50%	MK396495.	1	
	1	Rhiz	opus mi	icrosporus stra	in JJ-A3 18	S riboson	nal RNA gene, pa	rtial seque	nce: internal	transcribed spacer 1.	5.8S ribosomal RNA ge	ene, and i	_[691	691	99%	0.0	84.46%	HQ285720	1	
	1	Rhiz	opus mi	icrosporus gen	es for 18S	rRNA, ITS	61, 5.8S rRNA, IT	<u>S2, 28S rF</u>	RNA, partial a	ind complete sequent	ce, isolate: ATH63		689	689	99%	0.0	84.46%	AB894627.	1	
	1	Rhiz	opus mi	icrosporus gen	es for 18S	rRNA, ITS	61, 5.8S rRNA, IT	S2, 28S rF	RNA, partial a	ind complete sequent	ce, isolate: ATH40		688	688	99%	0.0	84.44%	AB894625.	1	
	1	Rhiz	opus mi	icrosporus stra	in APBSML	F19 18S	ribosomal RNA g	ene, partia	l sequence				684	684	99%	0.0	84.32%	MG733667	1	
	1	Rhiz	opus mi	icrosporus stra	in SMLF7 1	18S riboso	omal RNA gene, p	artial sequ	ience				684	684	99%	0.0	84.32%	MG840773	1	
	1	Rhiz	opus mi	icrosporus 185	ribosomal	RNA gene	e, partial sequenc	e: internal	transcribed s	spacer 1, 5.8S riboso	mal RNA gene, and inter	rnal trans	684	684	99%	0.0	84.32%	KM103772	1	
	1	Rhiz	opus mi	icrosporus var.	rhizopodifo	ormis isola	ate VPCI 728/09 1	8S ribosor	mal RNA gen	ie, partial sequence; i	nternal transcribed space	er 1, 5.85	684	684	99%	0.0	84.32%	KJ417564.1	L .	
	1	Rhiz	opus mi	icrosporus isol	ate ATH54	18S riboso	omal RNA gene.	partial sequ	uence; intern	al transcribed spacer	1. 5.8S ribosomal RNA	gene, and	684	684	99%	0.0	84.32%	KF709979.	1	
	1	Rhiz	opus mi	icrosporus stra	in 158 18S	ribosoma	I RNA gene, parti	al sequenc	ce: internal tra	anscribed spacer 1, 5	.8S ribosomal RNA gene	e, and inte	684	684	99%	0.0	84.32%	JX661044.1	1	
	1	Rhiz	opus mi	icrosporus isol	ate F2-02 1	8S riboso	mal RNA gene, p	artial sequ	ence: interna	I transcribed spacer	I <u>, 5.8S ribosomal RNA g</u>	ene, and	682	682	99%	0.0	84.30%	JN561253.	1	
		Unc	ultured fi	ungus clone C	MH146 185	S ribosom	al RNA gene, par	ial sequer	ice; internal t	ranscribed spacer 1.	5.8S ribosomal RNA gen	ne, and in	680	680	99%	0.0	84.28%	KF800237.	1	
	1	Rhiz	opus mi	icrosporus var.	rhizopodifo	ormis strai	in ATCC 200758	8S riboso	mal RNA gen	ie, partial sequence; i	nternal transcribed spac	er 1, 5.89	680	680	99%	0.0	84.28%	AY803934.	1	
_	1	Rhiz	opus mi	icrosporus var.	rhizopodifo	ormis isola	ate VPCI 177/P/1) 18S ribos	somal RNA ge	ene, partial sequence	; internal transcribed spa	acer 1, 5.	678	678	99%	0.0	84.20%	KJ417571.1	L	
		Rhiz	opus az	ygosporus stra	in CBS 35	7.93 18S i	ribosomal RNA g	ene, partial	l sequence; ir	nternal transcribed sp	acer 1, 5.8S ribosomal F	RNA gene	678	678	99%	0.0	84.25%	E Fe	edbao	k
					6 400	-		00.000			A THOM		676	676	0.08/	0.0	0/ 100/		1·28 AM	~
	ρ	Type he	re to se	earch			0		<u> </u>		<u>× × × · · · · · · · · · · · · · · · · ·</u>							^ 🗐 🖁	30/2019	\Box
Sour	ce	: http	os://ł	blast.nc	bi.nlr	n.nih	.gov/Bla	st.cg	i											

Sikuen	R_oligo sporus	KU729104 _USA	MK396495 _IND	AB894627 _IDN	EF151442 _CHI	KF710005 _IND	KR998045 _CHI	DQ6413 12_CHI	AY80 3941 _JPN	АҮ803 929_ ЛР N	DQ64 1311 _CHI	JN206308_P _blakesleean us
R_oligosporus_R	ID	100%	100%	100%	100%	100%	100%	99%	99%	99%	98%	57%
KU729104_USA	100%	ID	100%	100%	100%	100%	100%	99%	99%	99%	98%	57%
MK396495_IND	100%	100%	ID	100%	100%	100%	100%	99%	99%	99%	98%	57%
AB894627_IDN	100%	100%	100%	ID	100%	100%	100%	99%	99%	99%	98%	57%
EF151442_CHI	100%	100%	100%	100%	ID	100%	100%	99%	99%	99%	98%	57%
KF710005_IND	100%	100%	100%	100%	100%	ID	100%	99%	99%	99%	98%	57%
KR998045_CHI	100%	100%	100%	100%	100%	100%	ID	99%	99%	99%	98%	57%
DQ641312_CHI	99%	99%	99%	99%	99%	99%	99%	ID	100%	99%	99%	56%
AY803941_JPN	99%	99%	99%	99%	99%	99%	99%	100%	ID	100%	100%	57%
AY803929_JPN	99%	99%	99%	99%	99%	99%	99%	99%	100%	ID	99%	56%
DQ641311_CHI	98%	98%	98%	98%	98%	98%	98%	99%	100%	99%	ID	57%
JN206308_P_ blakesleeanus	57%	57%	57%	57%	57%	57%	57%	56%	57%	56%	57%	ID

 Table 2. Homology (%) of nucleotide sequences of *Rhizopus microsporus* isolates with several isolates that have been reported in GenBank

3.3 Trichoderma harzianum

DNA fragments of 650 bp were successfully amplified from 3 fungal samples using an ITS1 / ITS4 universal primer (Figure 1). The amplified DNA sample is then used for the phase of sequencing to ascertain the fungus species. Sequencing analysis confirmed that the fungi sampled 3 were *Trichoderma harzianum* with 98-99% homology in a succession of several *Trichoderma harzianum* isolates in genebank (Table 3).

0.01

Figure 4. Phylogenetic analysis of *Trichoderma harzianum* isolates based on an alignment of the partial nucleotide sequences of DNA-A using Mega 6.06 (Algorithm Neighbor-Joining with 1,000 bootstraps replicates).

The phylogenetic analysis showed that *Trichoderma harzianum* isolates formed two groups. *Trichoderma harzianum* isolates from Bali formed a group with several isolates from genebank including isolates from Indonesia, isolates from India, isolates from Malaysia, isolates from China, several isolates outside of Asia such as Portugal isolates, and the United States. As outgroup isolates, *Phycomyces_blakesleeanus* (JN206308) isolates used as a comparison (Figure 4). Based on the morphology, three isolates from Batu Organic Farm Soil, BPTP Ngijo, and Blitar Cocoa Plantation Soils were fungi antagonists of *T. harzianum* but after tracing DNA genetic similarities as a result of molecular analysis by PCR technique on GeneBank it was found that three isolates were *T. asperellum* [14].

🗄 🕫 <u>R</u> (PDF) Molecular characteriz S NCBI Blast.Nucleotide S × + ~						-	٥	×					
$\leftarrow \rightarrow c$	A https://blast.ncbi.nlm.nih.gov/Blast.cgi					. ☆	t= <i>l</i> ~	Ŀ						
Desc	riptions Graphic Summary Alignments Taxonomy							_						
Sequences producing significant alignments Download \vee Manage Columns \vee Show 100 \checkmark @														
	select all 100 sequences selected	GenE	<u>Bank</u>	<u>Graphi</u>	<u>cs D</u>	listance t	ree of results							
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession							
	Trichoderma harzianum strain LIPIMC0572 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gen	1151	1151	100%	0.0	99.07%	KC847182.1							
	Trichoderma harzianum strain GMS small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA g	1133	1133	100%	0.0	98.60%	MH333257.1							
	Trichoderma sp. JCM 28003 genes for 18S rRNA. ITS1, 5.8S rRNA, ITS2 and 28S rRNA, partial and complete sequence	1133	1133	100%	0.0	98.60%	LC133770.1							
	Trichoderma sp. isolate SDAS203867 small subunit ribosomal RNA gene, partial sequence: internal transcribed spacer 1, 5.8S ribosomal RNA	1125	1125	100%	0.0	98.45%	<u>MK870946.1</u>							
	Trichoderma harzianum strain ACCC32895 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene	1125	1125	100%	0.0	98.45%	MF871551.1							
	Trichoderma harzianum strain ACCC32889 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribos	1125	1125	100%	0.0	98.45%	MF871546.1							
	Trichoderma sp. isolate yi1432_1 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene	1125	1125	100%	0.0	98.45%	MH284887.1							
	Trichoderma harzianum strain HB22070 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene,	1125	1125	100%	0.0	98.45%	KY225617.1							
	Trichoderma harzianum isolate M11 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and	1125	1125	100%	0.0	98.45%	KT336515.1							
	Trichoderma harzianum strain BHU-BOT-RYRL19 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal R	1125	1125	100%	0.0	98.45%	KR856225.1							
	Trichoderma harzianum strain BHU-BOT-RYRL12 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal R	1125	1125	100%	0.0	98.45%	KR856218.1							
	Trichoderma harzianum strain BHU-BOT-RYRL8 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA	1125	1125	100%	0.0	98.45%	KR856214.1							
	Trichoderma sp. DUCC3046 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal	1125	1125	100%	0.0	98.45%	KR012437.1							
	Trichoderma sp. DUCC3045 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal	1125	1125	100%	0.0	98.45%	KR012436.1							
	Trichoderma sp. DUCC3044 18S ribosomal RNA gene, partial sequence, internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal	1125	1125	100%	0.0	98.45%	🗏 🖻 🖻	dbacl	۲,					
🗄 🔎 Sta	art your search O 🟦 🧮 🔎 💀					100 100	∧ %⊡ ^{8:06} 2/14	5 AM /2020	\Box					

 Table 3. Homology (%) of nucleotide sequences of *Trichoderma harzianum* isolates with several isolates that have been reported in GenBank

Sikuen	T_harzi anum	KC84718 2_IDN	KR8562 25_IND	MF8715 51_CHI	MF8715 46_CHI	KR85621 8_IND	KM4918 93_POR	MG5754 71_MLY	KY9673 17_CHI	MG2504 68_GER	KC8471 90_IDN	KF62479 2_USA	JN206308 _P_blakesl eeanus
Trichoderma_ha rzianum	ID	99%	99%	99%	99%	99%	99%	98%	98%	98%	99%	99%	51%
KC847182_IDN	99%	ID	100%	100%	100%	100%	100%	99%	99%	99%	100%	100%	52%
KR856225_IND	99%	100%	ID	100%	100%	100%	100%	100%	100%	100%	99%	100%	51%
MF871551_CHI	99%	100%	100%	ID	100%	100%	100%	100%	100%	100%	99%	100%	51%
MF871546_CHI	99%	100%	100%	100%	ID	100%	100%	100%	100%	100%	99%	100%	51%
KR856218_IND	99%	100%	100%	100%	100%	ID	100%	100%	100%	100%	99%	100%	51%
KM491893_PO R	99%	100%	100%	100%	100%	100%	ID	100%	100%	100%	99%	100%	51%
MG575471_ML Y	98%	99%	100%	100%	100%	100%	100%	ID	100%	99%	99%	100%	51%
KY967317_CHI	98%	99%	100%	100%	100%	100%	100%	100%	ID	100%	99%	100%	51%
MG250468_GE R	98%	99%	100%	100%	100%	100%	100%	99%	100%	ID	99%	100%	51%
KC847190_IDN	99%	100%	99%	99%	99%	99%	99%	99%	99%	99%	ID	99%	51%
KF624792_US A	99%	100%	100%	100%	100%	100%	100%	100%	100%	100%	99%	ID	51%
JN206308_P_bl akesleeanus	51%	52%	51%	51%	51%	51%	51%	51%	51%	51%	51%	51%	ID

IV. CONCLUSION

Three fungal isolates of agarwood sapwood on *Gyrinops versteegii* plant in Tabanan Regency, Provincy of Bali belong to the species: *Fusarium solani, Rhizopus microsporus,* and *Trichoderma harzianum*.

REFERENCES

- [1]. Akter, S., Tanvir Islam, Md., Mohd Zulkefeli, and Islam Khan, S. 2013. Agarwood Production- A Multidisciplinary Field to be xplored in Bangladesh. International Journal of Pharmaceutical and Life Sciences. P. 22-32
- [2]. Budi, R. S.W., Santoso, E. dan Wahyudi, A. 2010. Identifikasi Jenis-jenis Fungi yang Potensial terhadap Pembentukan Gaharu dari Batang Aquilaria spp. Jurnal Silvikultur Tropika Vol. 01 No. 01 Desember 2010, hal. 1 – 5
- [3]. Chhipa, H. and Kaushik. 2017. Fungal and Bacterial Diversity Isolated from *Aquilaria malaccensis* Tree and Soil, Induces Agarospirol Formation within 3 Months after Artificial Infection. Front Microbial. 8. 2017.
- [4]. Dewi, R.S. dan Aziz, S. 2011. Isolasi *Rhizopus oligosporus* Pada Beberapa Inokulum Tempe Di Kabupaten Banyumas. Molekul, Vol. 6. No. 2. Nopember, 2011: 93 – 104
- [5]. Faizal, A. dan Esyanti, R.R. 2018. Interaksi Mikroba dengan Pohon Penghasil Gaharu Genus Aquilaria. Dalam Budi, S.W; Hidayat, A dan Turjaman, M. Bioprospek Mikroba Hutan Tropis Indonesia. Penerbit IPB Press, Bogor, Indonesia

- [6]. Mega, I M. dan Phabiola, T. A. 2010. Isolasi Fungi Pembentuk Gubal Gaharu Pada Tanaman *Gyrinops Versteegii* di Kecamatan Pupuan Kabupaten Tabanan. *Agritrop*, 29(4): 189-198
- [7]. Mega, I M., Suanda, D.K., Kasniari, D.N. and Susrama, I G.K. 2015. Agarwood Producing Fungal Inoculant Formulation in Ketimunan Tree (*Gyrinops versteegii* DOMKE). International Journal of Bioscience and Biotechnology, Vol. III No. 1, September 2015. p. 22-27
- [8]. Mega, I.M. dan Nuarsa, I.W. 2019. Effect Of Fungal Inoculation To Resin Content On *Gaharu* Plants (*Gyrinops Versteegii* (Gilg.) Domke). International Journal of Environment and Geosciences 3(1), 10-16 (2019)
- [9]. Nugraheni, Y.M.M.A., Anggadhania, L., Putranto, R.A. 2015. Identifikasi tiga isolat cendawan asal Nusa Tenggara Barat dengan menggunakan primer ITS dan TEF 1-α Jurnal Pemuliaan Tanaman Hutan .Vol. 9 No. 2, September 2015, 77-90
- [10]. Nurbaya, Kuswinanti, T., Baharuddin, Rosmana, A. dan Millang, S. 2015. Eksplorasi *Fusarium* spp yang Berasosiasi dengan *Aquillaria* spp di Kabupaten Nunukan Kalimantan Utara. Prosiding Seminar Nasional Mikrobiologi Kesehatan dan Lingkungan. ISBN: 978-602-72245-0-6 Makassar, 29 Januari 2015
- [11]. Pasaribu, G., Waluyo, T.K. & Pari, G. 2013. Analisis Komponen Kimia Beberapa Kualitas Gaharu dengan Kromatografi Gas Spektrometri Massa. J. Penelitian Hasil Hutan, Vol. 31, No.3. hal. 181-185.
- [12]. Putri, N., Karlinasar, L., M. Turjaman, M., Wahyudi, I. and Nandika, D. 2017. Evaluation of incense-resinous wood formation in agarwood (*Aquilaria malacensis* Lam) using sonic tomography. Agriculture and Natural Resources 51 (2017): 84-90
- [13]. Ratnasari, Y. 2016. 100 Ton Gaharu Indonesia Siap Diekspor ke Arab Saudi. Sumber: Antara. <u>https:// tirto.id/100-ton-gaharu-indonesia-siap-diekspor-ke-arab-saudi-bsUn</u> (diunduh 17-9-2018)
- [14]. Sandy, Y. A., Djauhari, S., dan Sektiono, A.W. 2015. Identifikasi Molekuler Fungi Antagonis *Trichoderma Harzianum* Diisolasi dari Tanah Pertanian di Malang, Jawa Timur. Jurnal HPT Volume 3 Nomor 3 Agustus 2015. ISSN : 2338 4336. Hal.: 1-8
- [15]. Sangareswari, N, M., Parthiban, K.T., Kanna, S.U., Karthiba, L. and Saravanakumar, D. 2016. Fungal Mikrobe Associated with Agarwood Formation. American Journal of Plant Sciences, 7, 1445-1452
- [16]. Santosa, H. 2009. Konservasi dan Pemanfaatan Gaharu. Disampaikan dalam Seminar Nasional I Gaharu. Bogor
- [17]. Schwertz, A., Villaume, C., Decaris, B., Percebois, G. and Mejean, L. 1997. New identification of the strain *Rhizopus microsporus* var. *oligosporus* spT3 as *Rhizopus microsporus* var. *chinensis. Can. J. Microbiol.* 43: 971-976
- [18]. Sitepu, I. R., Santoso, E., & Turjaman, M. 2011. Identification of Eaglewood (Gaharu) Tree Species Susceptibility. Technical Report No. 1. R & D Centre for Forest Conservation and Rehabilitation Forestry Research and Development Agency (FORDA) Ministry of Forestry Indonesia