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Abstract 

This study examines the growth structure of the Fibonacci sequence using the first 50 Fibonacci numbers and 

compares alternative regression models to determine the most appropriate functional form. Linear, logarithmic, 

quadratic, cubic, and exponential regression models are estimated and evaluated based on their explanatory 

power and goodness-of-fit statistics. 

The results clearly indicate that the exponential regression model significantly outperforms all other 

specifications, explaining nearly all variation in the data (R² ≈ 0.9999). This finding is fully consistent with the 

theoretical properties of the Fibonacci sequence, particularly Binet’s formula, which describes Fibonacci 

numbers as an exponential function of their index. 

The study demonstrates that classical mathematical sequences can be effectively analyzed and validated using 

statistical regression techniques, highlighting the importance of functional form selection in empirical 

modeling. 

Keywords: Fibonacci sequence, exponential growth, regression analysis, nonlinear models 

----------------------------------------------------------------------------------------------------------------------------- --------- 

Date of Submission: 27-12-2025                                                                            Date of acceptance: 06-01-2026 

--------------------------------------------------------------------------------------------------------------------------  

 

I. Introduction 

The Fibonacci sequence is one of the most well-known numerical sequences in mathematics and has 

played a fundamental role in number theory and growth modeling. Defined recursively such that each term is 

the sum of the two preceding ones, the sequence exhibits remarkably rich structural properties despite its simple 

formulation. As a result, Fibonacci numbers have attracted sustained interest from both theoretical and applied 

perspectives. 

From a number-theoretic standpoint, the Fibonacci sequence has been extensively studied, particularly 

through its closed-form representation known as Binet’s formula, which highlights the intrinsic connection 

between the sequence and exponential growth. Numerous studies have investigated generalizations of the 

Fibonacci sequence, including Lucas sequences and bi-periodic or r-Fibonacci sequences, revealing deeper 

algebraic and structural properties (Aıt-Amrane & Belbachir, 2022). 

In recent years, research attention has increasingly shifted toward the statistical and analytical 

properties of Fibonacci numbers. Several studies have explored concepts such as convergence, summability, and 

statistical behavior of Fibonacci-based sequences in both real and complex domains. These works have 

introduced novel notions such as Fibonacci statistical convergence and summability methods, demonstrating 

how deterministic recursive sequences can be embedded within statistical frameworks (MDPI, 2024). 

Beyond pure mathematics, Fibonacci numbers have also been employed in a wide range of applied 

contexts. For instance, Fibonacci-based models have been used in population dynamics, where the recursive 

growth structure of the sequence provides insight into biological reproduction processes (Supriatna et al., 2019). 

Additionally, Fibonacci-derived polynomials and functional forms have been incorporated into predictive 

modeling and regression-based applications, showing promising performance in empirical data analysis (Liu, 

2023). 

Since its introduction in medieval mathematics, the Fibonacci sequence has attracted considerable 

attention due to its mathematical properties and diverse applications across disciplines. The sequence appears 

not only in number theory but also in computer science, biology, and the natural sciences, often in connection 

with the golden ratio (Koshy, 2001; Vlahos, 2018). 

Theoretical studies have largely focused on the derivation of closed-form expressions such as Binet’s 

formula and the asymptotic characteristics of the sequence (Hardy & Wright, 2008). 

In contrast, there is comparatively less literature on the statistical analysis of the Fibonacci sequence, 

particularly regarding regression-based modeling of its growth structure. While nonlinear regression and 



A Comparative Regression Analysis of the Growth Structure of the Fibonacci Sequence 

www.ijres.org                                                                                                                                              63 | Page 

exponential growth modeling have been widely used in other applied contexts (Montgomery, Peck, & Vining, 

2012; Gujarati & Porter, 2009), studies applying these techniques directly to Fibonacci numbers remain limited. 

Despite this extensive body of literature, comparative regression modeling of the Fibonacci sequence 

itself remains relatively limited. Most existing studies focus either on theoretical properties or on indirect 

applications of Fibonacci numbers, while fewer studies empirically compare linear and nonlinear regression 

models to capture the growth dynamics of the sequence. The present study addresses this gap by conducting a 

comparative regression analysis of the first 50 Fibonacci numbers, evaluating linear, polynomial, logarithmic, 

and exponential models to empirically confirm the exponential growth behavior predicted by theory. 

This study fills this gap by systematically comparing alternative regression specifications to 

empirically validate the exponential nature of the Fibonacci sequence. 

 

II. Materials and Methods 

Materials  

The dataset used in this study consists of the first 50 terms of the Fibonacci sequence. The term index (n) is 

defined as the independent variable, while the corresponding Fibonacci numbers (Fₙ) are used as the dependent 

variable. 

To examine the growth structure of the Fibonacci sequence from different perspectives, five regression models 

were estimated: linear, logarithmic, quadratic, cubic, and exponential regression models. The exponential 

regression model was estimated in a log-linear form by taking the natural logarithm of the dependent variable. 

Model comparisons were based on measures of explanatory power (R² and adjusted R²), prediction accuracy 

(standard error of the estimate), and overall model significance (F-statistic). All statistical analyses were 

conducted using SPSS software, and the significance level was set at 5%. 

 

III. Method 

Fibonacci numbers 

Let (𝐹𝑛)𝑛≥0 be the Fibonacci sequences, respectively, represented by F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for n ≥ 0 

(Altassan and Alan, 2022).  

Starting from 0 and 1, these series are created by adding the final two digits to win the third (Orhani, 2022): 

0 1 is how the series begins, so it is now 0 1 1, then 0 1 1 2, and finally 0 1 1 2 3. 

This is how the series would go on: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... 

With the exception of F(6)=8 and F(12)=144, every Fibonacci number greater than 1 includes at least one 

simple factor that is not a factor in any Fibonacci predecessor. This endless sequence is known as the Fibonacci 

sequence. Each number in the Fibonacci series or sequence is represented as. The Fibonacci formula can be used 

to get the sequence's Fibonacci numbers. Any specific Fibonacci number in the series, given its position, can be 

calculated using the formula based on the relationship between the subsequent number and the two preceding 

numbers. The formula to determine the (n+1)th number in the Fibonacci number sequence is (Dasdan, 2018),  

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

where n>1  

𝐹𝑛−1: nth Fibonacci number  

𝐹𝑛−2: (n-1)th Fibonacci number. 

The Golden Ratio and some Comparative Cases of Two Fibonacci Numbers 

Golden ratio, denoted by 𝜙. Two real numbers, a > b > 0, are in the golden ratio if their ratio equals the ratio of 

their total to the bigger of the two amounts. That is, 
𝑎 + 𝑏

𝑏
=

𝑎

𝑏
= 𝜙, 

The Greek symbol "phi" (𝜙) represents the golden ratio. Using the above identity, we get the quadratic equation. 

𝑥2 − 𝑥 − 1 = 0 

By assuming, 𝑥 =
𝑎

𝑏
, 

Thus, 

𝜙 =
1 + √5

2
  𝑎𝑛𝑑  𝜓 =

1 − √5

2
 

𝜙 and 𝜓 are algebraic numbers, as they are the roots of a quadratic equation with integer coefficients.  

Clearly, the constant ϕ satisfies the quadratic equation 𝜙2 = 𝜙 + 1, and is an irrational number with a value of  

𝜙 =
1 + √5

2
≈ 1.618033988749 … 

and 

𝜓 =
1 − √5

2
≈ −0.618033 … 
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𝜙 is inevitably the positive root since it is a ratio between positive numbers. The negative root is actually the 

negative inverse −
1

𝜙
, which has 

𝜓 =
1 − √5

2
= 1 − 𝜙 = −

1

𝜙
≈ −0.618033 … 

and shares many characteristics with the golden ratio (Mehdi-Nezhad and Badawi, 2024).    

 

Fibonacci Sequence and Exponential Growth 

The Fibonacci sequence is defined recursively as 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2,  𝐹0 = 0,  𝐹1 = 1. 
 

A closed-form expression for the Fibonacci numbers is given by Binet’s formula: 

𝐹𝑛 =
1

√5
(𝜑𝑛 − (1 − 𝜑)𝑛), 

 

where 𝜑 =
1+√5

2
 is the golden ratio. 

As 𝑛 increases, the second term converges to zero, implying 

𝐹𝑛 ≈
1

√5
𝜑𝑛. 

 

Taking natural logarithms yields a linear relationship: 

ln (𝐹𝑛) = ln (
1

√5
) + 𝑛ln (𝜑), 

 

which provides the theoretical foundation for the exponential regression model employed in this study (Koshy, 

2001; Hardy and Wright, 2008).  

In order to identify the functional form governing the relationship between the dependent and independent 

variables, a comparative regression modeling approach was employed. Following standard econometric 

practice, both linear and nonlinear regression specifications were estimated to assess whether a simple linear 

model adequately captures the underlying structure of the data (Gujarati and Porter, 2009; Wooldridge, 2016). 

The analysis includes linear, logarithmic, polynomial (quadratic and cubic), and exponential regression models. 

Polynomial regression models are commonly used to approximate nonlinear relationships within a parametric 

framework (Montgomery et al., 2012). The exponential regression model was estimated in log-linear form by 

taking the natural logarithm of the dependent variable, which is a standard approach for modeling exponential 

growth processes (Gujarati and Porter, 2009). 

The regression models used in the analysis are defined as follows (Gujarati & Porter, 2009; Wooldridge, 2016): 

 

Linear model: 

𝐹𝑛 = 𝛽0 + 𝛽1𝑛 + 𝜀𝑛 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 

Logarithmic model: 

𝐹𝑛 = 𝛽0 + 𝛽1ln (𝑛) + 𝜀𝑛 

 

𝑦𝑖 = 𝛽0 + 𝛽1ln (𝑥𝑖) + 𝜀𝑖 

 

Quadratic model:  

𝐹𝑛 = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑛2 + 𝜀𝑛 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝜀𝑖 

Cubic model: 

𝐹𝑛 = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑛2 + 𝛽3𝑛3 + 𝜀𝑛 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3 + 𝜀𝑖 

 

Exponential model: 

ln (𝐹𝑛) = 𝛽0 + 𝛽1𝑛 + 𝜀𝑛 
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ln (𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 

and equivalently: 

𝑦𝑖 = 𝑒𝛽0 ⋅ 𝑒𝛽1𝑥𝑖 ⋅ 𝑒𝜀𝑖  

 

Here, Fₙ denotes the nth term of the Fibonacci sequence, n represents the term index, βᵢ are the model 

parameters, and εₙ denotes the error term. 

Model performance was evaluated using goodness-of-fit measures, including R², adjusted R², the standard error 

of the estimate, and the F-statistic. The final model selection was based on both explanatory power and the 

principle of parsimony, favoring models that achieve superior fit with fewer parameters (Burnham and 

Anderson, 2002). 

 

IV. Results 

The analysis of the linear, logarithmic, quadratic, cubic, and exponential regression models used in the study is 

given in Table 1. 

 

Table 1. Comparative Table for Best Model Selection 

Model Functional Form R² Adj. R² Std. Error F p Evaluation 

Linear y = β₀ + β₁x 0.233 0.217 1.94×10⁹ 14.56 <0.001 Weak fit 

Logarithmic y = β₀ + β₁ ln(x) 0.099 0.080 2.10×10⁹ 5.25 0.026 Weakest model 

Quadratic y = β₀ + β₁x + β₂x² 0.506 0.484 1.57×10⁹ 24.02 <0.001 Moderate fit 

Cubic 
y = β₀ + β₁x + β₂x² + 

β₃x³ 
0.732 0.714 1.17×10⁹ 41.78 <0.001 Strong but complex 

Exponential ln(y)=β₀ + β₁x 0.999946 0.999945 0.052 890 684.7 <0.001 Best model 

 

As shown in Table 1, the exponential regression model is statistically significant (F = 890 684.7; p < 0.001). 

The explanatory power of the model is remarkably high (R² = 0.999946), indicating that almost all of the 

variation in the dependent variable is explained by the independent variable. Moreover, the low standard error of 

the estimate (Std. Error = 0.052) suggests a high level of predictive accuracy. 

According to the coefficient estimates, the coefficient of x is positive and statistically significant (β = 0.481; t = 

943.761; p < 0.001). This result indicates that a one-unit increase in x leads to an exponential increase in y. 

The estimated exponential regression model is given by: 

ln (𝑦) = 0.455 + 0.481𝑥 

 

or equivalently, 

𝑦 = 𝑒0.455 ⋅ 𝑒0.481𝑥 

𝑦 = 𝑒0.455+0.481𝑥 

Using the first 50 terms of the Fibonacci sequence, the comparative analysis of different regression models 

provides results that are fully consistent with theoretical expectations regarding the growth structure of 

Fibonacci numbers. 

According to Binet’s formula, which represents the closed-form solution of the Fibonacci sequence, the nth term 

can be approximated as follows: 

𝐹𝑛 ≈
1

√5
 𝜑 𝑛 

where 

𝜑 ≈ 1.618 

denotes the golden ratio. 

This formulation clearly indicates that Fibonacci numbers follow an exponential growth pattern. Therefore, the 

exceptionally strong performance of the exponential regression model is not a statistical coincidence, but rather 

a theoretically expected outcome. 

The results of the comparative regression analysis for selecting the best model in a mathematical context with 

data consisting of Fibonacci numbers are presented in Table 2. 

 

Table 2. Selection of the Best Model in Mathematical Context 

Model Functional Form R² Adj. R² Evaluation  

Linear 𝐹𝑛 = 𝛽0 + 𝛽1𝑛 0.233 0.217 Cannot capture linear growth 

Logarithmic 𝐹𝑛 = 𝛽0 + 𝛽1ln (𝑛) 0.099 0.080 Weakest fit 
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Quadratic 𝐹𝑛 = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑛2 0.506 0.484 Short interval approximation 

Cubic 
𝐹𝑛

= 𝛽0 + 𝛽1𝑛 + 𝛽2𝑛2 + 𝛽3𝑛3 
0.732 0.714 Numerically strong but not theoretical 

Exponential ln (𝐹𝑛) = 𝛽0 + 𝛽1𝑛 0.999946 0.999945 Consistent with Binet's formula 

 

The results presented in Table 2 indicate that the regression analyses conducted using the first 50 terms of the 

Fibonacci sequence clearly demonstrate that the growth structure of the sequence is not linear or polynomial, but 

rather exponential in nature. The exponential regression model is statistically highly significant (F = 890,684.7; 

p < 0.001) and explains almost all of the variation in the dependent variable (R² ≈ 0.9999). 

When the term index (n) is used as the independent variable, the positive and statistically significant coefficient 

(β = 0.481; p < 0.001) confirms that Fibonacci numbers follow an increasing-rate growth process. 

Although all estimated models are generally statistically significant, substantial differences are observed in their 

explanatory power. Linear and logarithmic models fail to adequately capture the growth dynamics of the 

Fibonacci sequence. Quadratic and cubic models provide higher goodness-of-fit measures; however, their 

increased complexity limits their theoretical consistency. 

In contrast, the exponential regression model clearly outperforms all other models, exhibiting an exceptionally 

high explanatory power (R² ≈ 0.9999) and a very low prediction error. These findings provide strong evidence 

that the growth structure of the Fibonacci sequence is fundamentally exponential. 

The linear regression model fails to capture the exponential growth pattern of the Fibonacci sequence and 

therefore provides the weakest fit among all estimated models. 

The logarithmic model offers only a limited approximation over a short range and does not adequately represent 

the true growth dynamics of Fibonacci numbers. 

Polynomial models (quadratic and cubic) achieve relatively high numerical goodness-of-fit measures due to 

their functional flexibility. However, despite their strong numerical performance, these models lack a solid 

theoretical foundation. 

The exponential regression model, in contrast, is fully consistent with Binet’s formula, making it the most 

appropriate model both statistically and theoretically. 

The empirical success of the exponential regression model directly reflects the theoretical exponential structure 

of the Fibonacci sequence, rather than being a consequence of model overfitting or sample-specific behavior. 

 

V. Discussion 

The Fibonacci sequence is a fundamental mathematical structure that is well known in the literature to 

exhibit exponential growth through its closed-form solution, known as Binet’s formula. The findings of this 

study demonstrate that this theoretical property is strongly confirmed within a statistical regression framework. 

Although polynomial models, particularly cubic regression, yield high levels of explanatory power 

(R²), this does not imply that they accurately capture the true growth structure of the sequence. Rather, such 

models provide numerical approximation over a limited range of the data, while failing to explain the underlying 

growth mechanism of the Fibonacci sequence. The ability of polynomial models to achieve high R² values 

primarily stems from their functional flexibility and should not be interpreted as evidence of theoretical 

adequacy. 

In contrast, the exponential regression model, owing to its parsimonious structure and its direct 

consistency with Binet’s formula, provides the most appropriate representation of the growth dynamics of the 

Fibonacci sequence. Consequently, the superior statistical performance of the exponential regression model 

should be regarded not merely as a numerical outcome, but as a theoretically expected and mathematically well-

grounded result. 

The comparison of alternative functional forms allows the researcher to distinguish between numerical 

goodness-of-fit and structural consistency of the model. 

 

VI. Conclusion 

This study examines the growth structure of the first 50 terms of the Fibonacci sequence using various 

regression models. The findings indicate that the sequence cannot be adequately represented by linear or 

polynomial growth models, whereas the exponential regression model provides the most appropriate approach 

from both theoretical and empirical perspectives. 

Although polynomial models yield high explanatory power, only the exponential regression model is 

theoretically consistent with Binet’s formula. Therefore, the dominance of the exponential model reflects not a 

statistical coincidence, but a theoretically expected result grounded in the mathematical structure of the 

Fibonacci sequence. 
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The near-perfect fit of the exponential model is fully consistent with the exponential nature of the Fibonacci 

sequence as expressed by Binet’s formula. In this regard, the study demonstrates that a classical mathematical 

sequence can be robustly validated through statistical modeling techniques. 
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