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Abstract

Tomato production is vital to Nigeria's agricultural economy, yet it faces severe challenges from plant diseases.
This research proposes a decentralized federated ensemble deep learning model for the early detection of tomato
diseases, tailored to the Nigerian farming context. Data will be sourced from local farms and public repositories,
comprising tomato leaf images and crop health indicators. A deep learning architecture which combines
Convolutional Neural Networks (CNN), Vision Transformers (ViT), and U-Net will be built to enhance disease
detection accuracy and segmentation. To address data privacy and ownership concerns, a federated learning
framework is implemented, allowing local model training without centralizing raw data. Blockchain and smart
contracts will be used to ensure secure data sharing, transparvent rvesult validation, and incentivize farmer
participation via a token-based reward system. Results and classification outputs will be stored using
InterPlanetary File System (IPFS), providing immutable and accessible disease diagnosis. The model will be
deployed on a mobile-based application which will enable real-time interaction for farmers, support informed
decision-making and timely intervention. This system is expected to be a scalable, intelligent framework adaptable
for broader agricultural applications that will significantly reduce yield losses, strengthen food security, and
enhance economic resilience in Nigeria's tomato value chain.
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I. Introduction

The agricultural sector remains a cornerstone of global food security and economic development
(Schreinemachers, et al., 2018). Within this sector, tomatoes (Solanum lycopersicum), a member of the Solanaceae
family, are one of the most widely cultivated crops globally due to their nutritional value and extensive culinary
use. The global production of tomatoes exceeded 186 million metric tons in 2022, with China, India, and the
United States being the leading producers (FAO, 2023), In Africa, Nigeria is the second-largest producer in Africa
behind Egypt, yielding approximately 4 million tons annually (Aina and Adewole, 2025). Despite this impressive
output, the nation spent over ¥16 billion (about $38 million) on 105,000 metric tons to import tomato paste
between 2018-2020 (Alimi. 2021). This paradox is driven largely by biotic constraints and a staggering post-
harvest loss rate of about 45%, equating to nearly 1.8 million tons of wasted tomatoes annually (Aina and
Adewole, 2025).

Diseases such as early blight (Alternaria solani), late blight (Phytophthora infestans), and root-knot

nematodes (Meloidogyne spp.) pose severe threats to tomato production. Early blight has been associated with up
to 86% yield loss in Nigeria and other parts of the world (Parvin, et al., 2021). In South-Ethiopia, losses from late
blight range from 63.7% to 100% (Negesa and Ayana, 2021). Root-knot nematodes significantly reduce nutrient
absorption in plants leading to stunted growth and severe yield losses. In northern Nigeria, root-knot nematode
infestations are estimated to cause yield losses of up to 40% (Onyeke and Akueshi, 2012).
There is therefore an urgent need for an intelligent, scalable, and adaptive solution for early detection, real time
diagnostics and control of these diseases. A decentralized federated ensemble deep learning approach offers a
promising pathway. In a region where disease outbreaks and data scarcity are common, such a system could
transform tomato production, minimize crop losses, reduce import dependency, and ensure sustainable economic
gains.

II. Literature Review
Plant disease detection using artificial intelligence (AI) and deep learning (DL) techniques has seen
considerable progress in recent years. Traditional image processing methods have given way to more accurate,
data-driven approaches powered by convolutional neural networks (CNNs), which have demonstrated high
performance in tasks such as leaf classification, segmentation, and disease severity estimation (Mohanty ef al.,
2016). Despite these advancements, existing models often rely on centralized training and curated datasets, which
pose limitations in terms of scalability, privacy, and regional specificity.

WWW.ijres.org 215 | Page



A Decentralized Federated Ensemble Deep Learning Model Framework For Detection ..

Several works, such as Ferentinos (2018), have illustrated the capability of CNNs to detect multiple crop
diseases with over 99% accuracy using controlled datasets. Similarly, the PlantVillage dataset, widely used for
training DL models, has enabled the development of robust classifiers for tomato diseases. However, models
trained on such datasets often fail to generalize effectively when applied to heterogeneous, real-world farm
conditions typical in regions like Nigeria. This points to a critical gap which is the lack of localized data and
models capable of adapting to diverse agroecological conditions.

To address this, recent studies have begun exploring federated learning (FL) frameworks in agriculture
(Kumar et al., 2021; Li ef al., 2025). FL allows model training on decentralized data sources without
compromising privacy, an essential feature for agricultural stakeholders concerned with data ownership. Yet, most
implementations have been limited to simple classification tasks and do not incorporate ensemble architectures or
advanced image segmentation, both of which are crucial for detailed disease detection and actionable insights.
Moreover, few of these systems are adapted to mobile deployment or local incentive mechanisms that promote
farmer participation.

On the ensemble front, combining multiple deep learning models has proven effective in enhancing
classification accuracy and robustness (Ganaie ef al., 2022). Vision Transformers (ViTs), though relatively new,
have been shown to outperform CNNs in capturing long-range dependencies in visual data (Dosovitskiy et al.,
2020). U-Net, meanwhile, excels in medical and agricultural image segmentation due to its encoder-decoder
structure and skip connections, enabling pixel-level disease localization (Ronneberger et al., 2015). Despite these
model-specific advantages, an integrated architecture that combines CNNs, ViTs, and U-Net in a federated setting
remains largely unexplored in agricultural Al

Furthermore, the integration of blockchain and smart contracts into agricultural Al systems is an
emerging research frontier. Blockchain has been proposed for securing agricultural data and validating
transactions (Tian, 2017), but its combination with federated learning in plant disease detection is still novel.
Using the InterPlanetary File System (IPFS) for decentralized data storage and employing smart contracts to
manage incentives for data contribution and validation represent pioneering approaches that address the dual
concerns of transparency and sustainability in data-driven agriculture.

Hybrid intelligent systems have been recognized for their effectiveness in modeling uncertain and
complex agricultural problems. Harisu Abdullahi et al. (2025) developed a hybrid fuzzy—neural expert system for
agricultural decision support, specifically targeting tomato pests and diseases. Their model combined fuzzy logic,
which captures uncertainty and linguistic knowledge, with neural networks, which are capable of learning from
large datasets. This synergy provided a knowledge representation framework that enabled farmers to make
informed decisions regarding pest and disease management.

The strength of this approach lies in its adaptability and robustness in handling non-linear agricultural
data. Unlike conventional rule-based systems, the hybrid fuzzy—neural model offers a self-learning component
that enhances predictive accuracy over time. However, challenges remain in terms of scalability, as real-world
deployment requires continuous updates of rules and integration with IoT sensors for real-time monitoring. The
study illustrates how merging symbolic and sub-symbolic Al can significantly enhance agricultural decision
support systems.

Traditional centralized machine learning frameworks often require the aggregation of large-scale farm
data in a single repository, raising concerns about data privacy and ownership. To address this, federated learning
(FL) has emerged as a promising paradigm. Mamba et al. (2023) proposed an image-based crop disease detection
framework using federated learning, which enabled collaborative model training across multiple devices without
transferring raw data.

This approach not only preserved data privacy but also allowed for a diverse range of crop images to be
utilized in model training. The federated model demonstrated improved generalization across heterogeneous
farming environments compared to centralized models. Importantly, the system empowered smallholder farmers
to contribute to model updates while retaining ownership of their agricultural data. Nevertheless, challenges such
as communication overhead, model convergence, and handling unbalanced datasets persist. The study marks a
significant step towards decentralized and privacy-preserving smart farming solutions.

The shift towards precision agriculture emphasizes localized, data-driven interventions for crop growth
monitoring and disease management. Imtiaz et al. (2022) proposed a peer-to-peer (P2P) machine learning platform
that facilitated knowledge sharing among farmers for crop growth and disease monitoring. Their framework
integrated distributed machine learning algorithms with peer-to-peer communication protocols to enhance
decision-making.

This decentralized approach fosters collaboration and democratizes access to agricultural intelligence,
reducing reliance on centralized servers or institutions. By leveraging local computational resources, the P2P
platform enhances scalability and resilience. However, the heterogeneity of devices and variable internet
connectivity in rural areas present challenges to its large-scale deployment. This model reflects the growing
importance of community-driven knowledge exchange in the future of agriculture.
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The work of Olotu, et al (2025) presented a decentralized ensembled deep learning model tailored for
the early detection and control of tomato plant diseases, addressing critical challenges in food security and
sustainable agriculture. By leveraging ensemble learning within a decentralized framework, the study enhances
accuracy while ensuring data privacy and reliability across diverse farming environments. This work makes a
valuable contribution by combining technical innovation with practical applicability, offering a scalable solution
for modern agricultural systems (Olotu et al., 2025).

Al has also been integrated into smart agriculture systems for disease detection and crop management.
Mitra et al. (2022) examined how smart agricultural practices, enhanced by Al, can transform farm operations.
Similarly, Oyewo et al. (2021) presented a framework for mitigating disease infestation in selected plants using
artificial intelligence-based detection techniques. Their approach leveraged deep learning algorithms for early
detection of plant diseases, which allowed for timely interventions and minimized crop loss.

These studies highlight the potential of Al in improving agricultural resilience by providing real-time
monitoring, predictive insights, and automated interventions. The limitations, however, include high
computational demands, the need for large labeled datasets, and the difficulties of transferring models across
different crop species and geographic regions.

Beyond Al and federated learning, IoT and blockchain technologies have been increasingly explored to
improve crop management systems. Vitali et al. (2021) provided an interdisciplinary survey on IoT applications
in crop management, identifying the role of interconnected devices in monitoring soil health, irrigation, and crop
disease prevalence. [oT sensors enable the collection of continuous data streams, thereby enhancing the precision
of agricultural interventions.

Hassija et al. (2021) advanced this discourse by proposing a blockchain and deep neural networks-based
framework for enhanced crop protection. Blockchain ensured data security, immutability, and trust among
stakeholders, while deep neural networks provided accurate disease detection. The integration of blockchain with
Al and IoT creates a transparent, secure, and automated ecosystem for agricultural decision-making. However,
high energy consumption and technical complexities remain barriers to adoption, especially in resource-
constrained farming communities.

The reviewed literature underscores a progressive movement towards decentralized, intelligent, and
secure agricultural systems. Hybrid fuzzy-neural approaches (Harisu Abdullahi et al, 2025) emphasize the
importance of combining symbolic reasoning with machine learning. Federated and P2P learning frameworks
(Mamba et al., 2023; Imtiaz et al., 2022) highlight privacy, collaboration, and democratization of agricultural
intelligence. Al-driven detection systems (Mitra et al., 2022; Oyewo et al., 2021) demonstrate high accuracy in
disease prediction, while IoT and blockchain frameworks (Vitali ef al., 2021; Hassija et al., 2021) ensure secure
and transparent data management.

Despite these advances, critical gaps remain. First, most models are tested under controlled or limited
field conditions, raising concerns about scalability in diverse agro-climatic zones. Second, challenges such as data
imbalance, limited internet infrastructure, and high energy consumption constrain the real-world deployment of
these systems. Third, the integration of multi-technology frameworks combining federated learning, blockchain,
10T, and hybrid AI models remains underexplored. Addressing these gaps will be crucial in realizing sustainable
and inclusive smart agriculture.

This work introduced a novel ensemble deep learning architecture merging CNN, ViT, and U-Net within
a federated learning framework tailored for heterogeneous and privacy-sensitive agricultural data. It addresses the
lack of real-time, field-applicable systems by incorporating mobile-based deployment and farmer-facing
interfaces. It also innovatively integrates blockchain and IPFS technologies to provide immutable recordkeeping,
secure data sharing, and a token-based incentive structure for stakeholder engagement.

By grounding model development in both local farm data and globally available datasets like
PlantVillage, the research ensures contextual relevance while maintaining generalizability. The scientific
contributions thus span across technical innovation, practical deployment, and societal impact. These
contributions include a federated ensemble architecture that combines CNN, ViT, and U-Net to enhance accuracy
and disease segmentation; a decentralized framework that ensures data privacy, ownership, and regulatory
compliance; the integration of blockchain and IPFS for secure, transparent, and traceable model operations; and
a smart contract-based reward system that incentivizes data sharing and expert validation.

I11. Materials and Methods

This research adopts a hybrid data-driven and decentralized artificial intelligent approach to detect
tomato plant diseases using a federated ensemble deep learning model, specifically focused on agricultural regions
in Nigeria. The methodology comprises five core phases: data collection, data preparation, model development,
decentralized implementation, and evaluation.

The dataset for this study will be sourced from three channels: two primary and one secondary. The
primary data will be obtained from “Lead Impact Farm” located in Akure, Ondo State, Nigeria and my personal
farm, both located in Nigeria’s tomato-producing regions. These datasets will include real-time images and sensor-
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based crop features such as leaf color, shape, and size, stem strength and pigmentation, flower and fruit
development, and physiological parameters like moisture level and temperature. Secondary data will be accessed
from PlantVillage, a publicly available repository that includes annotated plant disease images. The aim is to
gather a representative sample of tomato leaf images and crop characteristics under various conditions prevalent
in Nigeria, ensuring sufficient diversity in disease type and environmental background.

The collected data will be pre-processed to ensure consistency and readiness for model training. Data
augmentation techniques such as flipping, rotation, contrast enhancement, and cropping will be used to
synthetically expand the dataset, prevent overfitting, and improve the model’s generalization capacity across
various tomato plant disease conditions.

The deep learning architecture will combine Convolutional Neural Networks (CNN), Vision
Transformers (ViT), and U-Net. CNN will be used to extract local texture features, edges, and spatial patterns,
while ViT will handle global contextual relationships. U-Net will provide pixel-level segmentation and disease
localization. The model pipeline processes raw images into high-dimensional feature maps via multiple
convolutional, pooling, batch normalization, and dropout layers. The final output is a classification and
segmentation mask used for identifying disease presence and severity.

To enhance transparency and scalability, the model will be deployed on a decentralized framework. A
federated learning system will be used, where farmers’ local devices or edge nodes train the model independently
using their data, without uploading raw images to a central server. Only model parameters (weights) are shared
and aggregated using a global optimizer. Blockchain technology will facilitate data integrity and security. IPFS
(InterPlanetary File System) will be used to store model results, each identified by a unique CID (Content
Identifier).

Smart contracts deployed on Ethereum will handle validation of results through a crowd-sourced voting
mechanism among experts. In addition, a token-based incentive system will reward contributors (farmers,
researchers, or verifiers) for sharing data and validating results. This will encourage sustainable data contribution
and expert participation.

Upon building the models, the models will be deployed on a mobile application that can work across
different mobile operating system platforms. Authentication will be managed through cryptographic public/private
keys and tokenized session controls.

This methodology ensures robust, privacy-preserving, and locally adaptable detection of tomato diseases
in Nigeria’s agricultural systems.

System Architecture and Design Principles
The system architecture was formulated based on both technical considerations and the practical realities of
agricultural environments. The architecture is shown in figure 1.0
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Figure 1.0 Architecture of the system.

Data Collection:
Data will be collected from three sources, two primaries; (“Lead impact farm”, my personal farm,) and one
secondary source (PlantVillage). Crop features such as growth parameters, which includes; Leaf Color, Leaf Shape
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and Size, Stem Strength and Color, Flower and Fruit Development, Overall Plant Vigor, Moisture Levels,
Temperature and Humidity, Nutrient Levels etc, will be necessary for development of effective control system.

Data preparation

In order to get the optimal results of all the images will have to be identical in resolutions and classes, all images
will be re-scaled and color toned to get an identical-looking dataset. All the images will be resized to 256 x 256
and further passed on to the deep learning module this make our solution robust to input image size differences.
As shown in Algorithm below:

Algorithm for Data processing
Procedure CONVERT — IMAGE (Image)
image < - RE-SIZE IMAGE (Image)
image < - BRIGHTEN IMAGE (Image)
imageArray <- CONVERT TO ARRAY (Image) NumPy array
imageArray < - SCALEARRAY ->Divide value by 255 (normalization)
Return ImageArray

End procedure

[ Data Preparation ] [ Image Processing ]
Load images of diseased
and healthy plants Convert Image

L I

[ Normalize pixel values ] [ Brighten Image ]

. (——~o——"
[ Augment images J 1

l [ Conwvert to Array J
Split into training, 1
validation, and test sets
l MNormalize
Divide value by 255
[ Save the prepared data ]

Figure 2.0 Algorithm for Data processing and Image Processing

Figure 2.0: Algorithm for Data processing

The complete ML pipeline encompasses the entire lifecycle from data collection through model deployment and
continuous improvement through federated learning, demonstrating a comprehensive approach to agricultural Al
system development. The pipeline begins with data collection and preprocessing, where raw tomato leaf images
undergo systematic augmentation and normalization to create a robust training dataset. The training phase employs
the hybrid CNN-ViT architecture with sophisticated optimization strategies including adaptive learning rate
scheduling and class-weighted loss functions to address dataset imbalance.

The federated learning extension represents a significant innovation in the ML pipeline, enabling continuous
model improvement through privacy-preserving collaboration among farmers worldwide. This approach
addresses the fundamental challenge of learning from diverse regional disease patterns while maintaining strict
privacy guarantees for agricultural data. The federated learning pipeline operates in parallel with the inference
system, allowing farmers to contribute to global model improvement without sharing their sensitive farm data
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Figure 3.0 Machine Learnimg Pipeline and DevOps Process

Data Augmentation:
Augmentation techniques like rotation, flipping, cropping, and contrast adjustments to increase the dataset's
diversity. This helps prevent overfitting and improves model generalization.
Deep Learning Module: The deep learning module is made up of the following:
i. The convolutional neural network model (CNN)
il. The vision transformer model (ViT)
ii. The U-net model (U-net)
CNN extract local features like textures, edges, and shapes, help detect early signs of disease on tomato leaves. A
custom CNN is designed to extract important visual features from the images. Input images are transformed to
high dimensional feature maps.
A review of existing works on plant diseases detection will be carried out. The decentralized federated ensemble
deep learning model for detection of plant diseases comprises of several integral modules: Data collection,
Ensemble deep learning, Decentralization and Federated learning Modules.
Data preparation will be done to get the optimal results of all the images by re-scaling and color-toning to get an
identical-looking dataset. The ensemble deep learning module is made up of the convolutional neural network
model (CNN), the vision transformer model (ViT), and the U-net model (U-net). CNN extract local features like
textures, edges, and shapes sent as input images which is transformed to high dimensional feature maps at the
convolution layer which is expressed in equation 1:
where I(x, y) is the pixel value of the input image at position (x,y), k(i,j) is the convolution filter of size knx ky
applied to the images, b is a bias term, f(x, y) is the output feature map. An activation function ReLU (Rectified
Linear Unit) is applied to introduce non-linearity into the model expressed in equation 2:
ReLUy = max (0, x) (2)
where x is the output from the convolution operation.
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ViT divides the input image into patches and flattens each patch into a vector, a positional embedding Epos is added
to each patch embedding to provide information about the position of the patch in the original image expressed
mathematically in equation 3 below:
2= [Xas + Eposs...; X + Epos 3)

where X.isis a special classification token (learnable), N is the total number of patches.
The Self-attention allows ViT to capture global relationships between all patches using a scaled dot-product
attention mechanism.

The scaled dot-product attention is then computed as expressed in equation 4:

Attention(Q,K,V) = softmax %]V 4)

where QKT is the dot product between the will be captured by comparing each patch with every other patch,
allowing the model to globally aggregate information, di is the dimensionality of the key vector used to scale the
dot product, V is the value vector, which is weighted by the attention scores.
The local features Fcnn from the CNN and global features Fyir from ViT are combined through a weighted sum
expressed in equation 5:

Feombine = @ * FCNN + (1 — a) * FViT &)

where « is a learnable parameter or a hyperparameter controlling the contribution of local and global features.
The combined feature maps are then fed into the MC-U-Net for pixel-level classification.
The encoder applies a convolution followed by max-pooling to downsample the combined feature maps expressed
mathematically as:

E® = ReLUW () * &Y+ b(D)) ) (6)
F I

WO is the weight matrix of layer, * denotes convolution, F,,,. is the downsampled feature map at layer L.
The decoder upsamples the feature maps using transposed convolutions to recover spatial resolution expressed as:

Fior = RELU(Wye,*" Foy + bi) )
where: *7 represents transposed convolution. Each pixel is classified into one of the classes using a softmax
function over the channels expressed as:
y(x,y) = softmax(Wout*Faec(X, ¥) + bout) ®)
where y(x,y) represents the predicted class probabilities for pixel (X,y) Wyt and by, are the weights and bias for
the final output layer.
Decentralization will be achieved by leveraging blockchain technology and smart contracts, each result is given a
content identifier (CID), which is a unique hash representing the result mathematically as:
CID = H(R) )
The smart contract will distribute the CID to a predefined group of verifiers; each verifier submits their agreement
or disagreement with the classification result mathematically expressed as:
SC(R) = { Valitli(R) if Yy, Votcfi = T.}
Invalid(R) otherwise
Where vote; is the vote from the i-th verifier, N is the total number of verifiers, T is the threshold percentage
required for validation. A token-based incentive system will be implemented through smart contracts also, such
that participants (farmers, experts, researchers) will be encouraged to contribute their data (e.g., tomato leaf
images or feedback on disease classification). formulated as:
T, = aG (11)
Where a is a proportionality constant set by the smart contract to determine the reward rate.
The central aggregator through federated learning collects the locally updated model parameters and aggregates
them to improve the global model, if w, represents the model weights trained by the i-th node (farmer) at time t,
then the global model weights wi+jare computed as;

WT + 1 =2§V=1%’wg (12)
Where: n; is the number of data samples at node i, n is the total number of data samples across all nodes.

(10)

Iv. Conclusion
This work presented a hybrid CNN-ViT based system to enhance tomato disease classification while
integrating blockchain-based deployment strategies for reliability and scalability. In the future, the Python
programming language will be used to further refine the framework while a professional web-based application
will be designed for farmers to interact with the system, query disease conditions, analyze crop health, and receive
validated Al-powered recommendations through the blockchain consensus mechanism.
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