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Abstract 
Time series data in real-world systems are often affected by noise, missing observations, and complex temporal 

dependencies, which pose significant challenges to accurate modeling and generation. To address these issues, 

this paper proposes a diffusion-based framework for time series generation from a probabilistic generative 

modeling perspective. The proposed framework integrates a Transformer encoder and a gated temporal 

convolutional network to jointly capture global and local temporal dependencies. Specifically, the input time 

series is first embedded with positional encoding and processed by a Transformer architecture to model long-

range temporal correlations through multi-head self-attention, after which the encoded representations are 

decoded by a gated temporal convolutional network that employs dilated convolutions and gating mechanisms to 

capture multi-scale temporal patterns. Based on the decoded representations, a diffusion probabilistic model is 

constructed by learning a reverse denoising process from progressively noised data. During training, the model 

learns to recover clean time series from noisy inputs at different diffusion steps, while during inference, realistic 

time series samples are generated by iteratively denoising from pure noise. Experimental results demonstrate that 

the proposed method effectively models complex temporal dynamics and exhibits strong robustness under noisy 

and missing data scenarios. 
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I. INTRODUCTION 

Time series data are widely encountered in real-world systems such as communication networks, 

industrial monitoring, finance, and energy management [1]. Accurate modeling and generation of time series are 

critical for tasks including forecasting, anomaly detection, data completion, and system simulation [2]. However, 

real-world time series often exhibit strong non-stationarity, complex temporal dependencies, and are frequently 

corrupted by noise or missing observations due to sensor failures, transmission errors, or environmental 

disturbances [3]. These characteristics significantly challenge conventional time series modeling methods. 

Traditional statistical models, such as autoregressive and state-space approaches, rely on strong 

assumptions about linearity and stationarity, which limit their effectiveness in complex real-world scenarios [4]. 

With the development of deep  learning, neural network based methods, including recurrent neural networks 

and temporal convolutional networks, have demonstrated improved representation capacity for temporal dynamics 

[5, 6]. Nevertheless, most existing deep learning approaches focus on deterministic prediction or point estimation 

and lack the ability to explicitly model the underlying data distribution and uncertainty, which is crucial for robust 

generation and completion tasks. 

Recently, generative modeling has emerged as a promising paradigm for time series analysis. By learning 

the data distribution rather than producing single-point predictions, generative models can naturally capture 

uncertainty and generate diverse samples. Generative adversarial networks have been applied to time series 

generation, but their training instability and mode collapse issues limit their practical applicability [7]. In contrast, 

diffusion probabilistic models have shown remarkable performance and training stability in image generation by 

learning a gradual denoising process, making them an attractive alternative for generative modeling [8]. 

Motivated by these advances, this paper investigates diffusion-based generative modeling for time series 

data. However, directly applying diffusion models to time series remains challenging due to the need to 

simultaneously capture long-range temporal dependencies and fine-grained local temporal patterns. To address 

this challenge, we propose a diffusion-based framework that integrates a Transformer encoder and a gated 

temporal convolutional network. The Transformer module leverages multi-head self-attention to model global 

temporal correlations, while the gated temporal convolutional network captures local and multi-scale temporal 

structures through dilated convolutions and gating mechanisms. By combining these components within a 
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diffusion probabilistic framework, the proposed method provides a unified solution for time series generation and 

completion under noisy and missing data scenarios. 

 

II. RELATED WORK 

Time series modeling has been widely studied, with existing methods generally categorized into 

traditional statistical models, deep learning based deterministic approaches, and generative models. Traditional 

methods, such as autoregressive and state-space models, rely on assumptions of linearity and stationarity, which 

limit their effectiveness in complex and non-stationary real-world scenarios. Deep learning approaches, including 

recurrent neural networks, temporal convolutional networks, and Transformer-based models, have demonstrated 

strong capability in modeling temporal dependencies. However, most of these methods focus on deterministic 

prediction and do not explicitly model data uncertainty or generation mechanisms [9]. 

Generative models provide an alternative perspective by learning the underlying data distribution. While 

generative adversarial networks and variational autoencoders have been applied to time series generation, they 

often suffer from training instability or limited generation quality. Recently, diffusion probabilistic models have 

emerged as a promising generative framework due to their stable training and iterative denoising formulation [10]. 

Nevertheless, effectively capturing both global temporal dependencies and local multi-scale patterns in time series 

remains challenging. To address this issue, this work integrates diffusion modeling with a Transformer encoder 

and a gated temporal convolutional network to jointly model global and local temporal structures. 

 

III. METHODOLOGIES 

3.1 Problem definition 

Let 𝑋 ∈ ℝ𝑇×𝐹 denote a multivariate time series of length 𝑇 with 𝐹 feature dimensions, where 𝑥𝑡 ∈ ℝ𝐹 

represents the observation at time step 𝑡. In real-world scenarios, the observed time series is often corrupted by 

noise or contains missing values due to sensor failures, transmission errors, or external disturbances. 

The objective of this work is to learn a probabilistic generative model that captures the underlying data 

distribution 𝑝(𝑋) of time series data, rather than producing deterministic point estimates. Such a model should be 

capable of generating realistic time series samples and reconstructing corrupted or incomplete observations in a 

unified framework. 

Formally, given a partially observed or noisy time series 𝑋̃ , the goal is to model the conditional 

distribution 𝑝(𝑋|𝑋̃) and recover the clean time series representation. By learning the data generation mechanism 

from a probabilistic perspective, the proposed approach enables both time series generation from noise and 

effective completion under missing or corrupted data conditions. 

 

3.2 Input 

Given a multivariate time series 𝑋 ∈ ℝ𝑇×𝐹, each observation 𝑥𝑡 is first mapped into a latent embedding 

space through a linear projection, producing an embedded sequence 𝐸 ∈ ℝ𝑇×𝑑, where 𝑑 denotes the embedding 

dimension. This transformation enables the model to represent heterogeneous input features in a unified latent 

space. 

To retain temporal order information, positional encoding is incorporated into the embedded 

representations. By explicitly encoding time-step information, the positional encoding allows the model to 

distinguish different temporal positions and facilitates effective modeling of sequential dependencies. The 

resulting representations, obtained by combining value embeddings and positional encodings, are used as the input 

to the Transformer encoder. Figure 1 illustrates the overall architecture of the proposed framework. 

 

3.3 Transformer encoder 

Based on the embedded input representations obtained in Section 3.2, the Transformer encoder is 

employed to model global temporal dependencies in the time series. Let 

 𝐻(0) = 𝐸 + 𝑃 ∈ ℝ𝑇×𝑑 , (1) 

denote the initial input to the Transformer encoder, where 𝐸  is the value embedding and 𝑃  represents the 

positional encoding. 

The Transformer encoder updates the representations through stacked self-attention layers, allowing each 

time step to attend to all other time steps in the sequence. The output of the 𝑙-th Transformer layer is given by 

 𝐻(𝑙) = TransformerLayer(𝐻(𝑙−1)), (2) 

where the self-attention mechanism enables the model to capture long-range temporal correlations across the 

entire sequence. 

 Through this process, the encoder produces context-aware representations 𝐻 = 𝐻(𝐿) that integrate global 

temporal information, which are subsequently used for local modeling and generative learning. 
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3.4 Gated temporal convolutional network 

Although the Transformer encoder effectively captures global temporal dependencies, its self-attention 

mechanism does not explicitly model local temporal continuity and multi-scale patterns. To complement global 

modeling, a gated temporal convolutional network (GTCN) is employed to capture local and multi-scale temporal 

dynamics. 

Let 𝐻 ∈ ℝ𝑇×𝑑 denote the context-aware representations produced by the Transformer encoder. The 

GTCN applies one-dimensional dilated convolutions along the temporal dimension to model local dependencies 

with different receptive fields. Specifically, two parallel convolutional branches are used to construct a gating 

mechanism: 

 𝐻
~

= tanh⁡(Conv𝑓(𝐻)), 𝐺 = 𝜎(Conv𝑔(𝐻)), (3) 

where Conv𝑓(⋅) and Conv𝑔(⋅) denote temporal convolution operations with dilation, tanh⁡(⋅) generates 

candidate features, and 𝜎(⋅) is the sigmoid activation producing gating weights. 

The final output of the gated temporal convolutional network is obtained by element-wise modulation: 

 𝑍 = 𝐻
~

⊙𝐺,  (4) 

where ⊙ denotes element-wise multiplication. Through the gating mechanism, the network adaptively controls 

information flow across different temporal scales, enabling effective modeling of local temporal structures. The 

resulting representations 𝑍 serve as the input for subsequent diffusion-based generative modeling. 

 
Figure1: Overall architecture of the proposed diffusion-based time series generation framework 

 

3.5 Diffusion based generative modeling 

Based on the locally enhanced representations produced by the gated temporal convolutional network, a 

diffusion probabilistic model is constructed to learn the generation mechanism of time series data. Let 𝑍 ∈ ℝ𝑇×𝑑 

denote the output representation of the GTCN. To facilitate diffusion modeling, the sequential representation 𝑍 is 

first transformed into a two-dimensional structured representation through a sequence-to-image mapping 

operation, which is motivated by classical time-delay embedding techniques originating from the work of Takens 

[11]. 

 𝐼 = 𝒯(𝑍), (5) 

where 𝐼 ∈ ℝ𝐻×𝑊 and 𝒯(⋅) denotes a deterministic reshaping operation that preserves temporal structure. 

The diffusion model defines a forward noising process on the image-like representation 𝐼 , where 

Gaussian noise is progressively added according to a predefined noise schedule: 

 𝐼𝑡 = √𝛼𝑡𝐼 + √1 − 𝛼𝑡𝜖, 𝜖 ∼ 𝒩(0, 𝐼), (6) 

with 𝑡 ∈ {1, … , 𝑇𝑑} denoting the diffusion step and 𝛼𝑡 ∈ (0,1) controlling the noise level. 

The reverse process aims to recover the clean representation by learning a denoising function 

parameterized by a neural network: 

 𝜖
^

𝑡 = 𝑓𝜃(𝐼𝑡 , 𝑡), (7) 

where 𝑓𝜃(⋅)  predicts the injected noise at each diffusion step. During training, the model is optimized by 

minimizing the denoising loss: 

 ℒdiff = 𝔼𝑡,𝜖[|𝜖 − 𝑓𝜃(𝐼𝑡 , 𝑡)|2
2], (8) 

which encourages accurate noise estimation across different diffusion steps. 

During inference, the generation process starts from pure Gaussian noise and iteratively applies the 

learned denoising function in reverse order, producing a clean image-like representation 𝐼 . The generated 
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representation is then transformed back to the sequential domain via the inverse mapping 𝒯−1(⋅), yielding the 

final time series output. Through this diffusion-based generative modeling, the proposed framework enables both 

realistic time series generation and effective reconstruction under noisy or missing data scenarios. 

 

IV. EXPERIMENTS 

4.1 Experimental setup 

This section conducts a systematic evaluation of the proposed generative method under irregularly 

observed time series settings. The experiments cover multiple real-world and synthetic time series datasets, aiming 

to examine the ability of generative models to capture data distributions and dynamic structures in the presence 

of missing observations. The experiments are performed on four representative multivariate time series datasets, 

including Weather, Electricity, Energy, and Stocks. These datasets exhibit diverse characteristics in terms of 

temporal dynamics, noise levels, and inter-variable correlations, covering a wide range of typical patterns such as 

dominant periodicity, trend variations and stochastic fluctuations. To characterize modeling difficulty under 

incomplete observations, the experiments are conducted in irregular time series settings by randomly discarding 

a fixed proportion of observations from each sequence. Specifically, observation drop rates of 30%, 50%, and 

70% are considered, corresponding to different levels of data incompleteness. All methods are evaluated under 

identical data splits, missing-rate settings, and training budgets to ensure fair comparisons. 

 

4.2 Evaluation metric 

To quantitatively assess the quality of generated time series under irregular observation settings, this 

work adopts a discriminative evaluation protocol, which measures the distinguishability between real and 

generated samples. This metric evaluates whether the generated sequences match the statistical characteristics of 

real data, and has been widely used as an indirect but effective criterion for generative time series modeling. 

Specifically, a binary discriminator 𝐷(⋅) is constructed to classify input time series samples as either real 

or generated. Real and generated samples are mixed and then split into training and test sets. The discriminator is 

trained on the training set and evaluated on the test set, yielding a classification accuracy denoted as Acc. 
To provide a meaningful reference point corresponding to the case where real and generated samples are 

indistinguishable, the discriminative score is defined as 

 Dis = |Acc−0.5|. (9) 

When the generated samples closely match the real data distribution, the discriminator performs no better 

than random guessing, resulting in Acc ≈ 0.5  and thus Dis ≈ 0 . Conversely, a larger discriminative score 

indicates that the generated samples are easier to distinguish from real data, implying greater distributional 

discrepancy. Therefore, a lower discriminative score corresponds to higher generation quality. 

 

4.3 Results analysis 

In this subsection, the proposed method is compared with representative baseline models using the 

discriminative evaluation protocol described in Section 4.2. All methods are evaluated under identical data splits, 

missing-rate settings, and discriminator configurations to ensure fair comparison. The discriminative scores under 

30%, 50%, and 70% observation drop rates are jointly reported in Table 1. 

 

Table 1: Discriminative scores under different drop rates (best in bold). 
Drop Rate Method Weather Electricity Energy Stocks 

30% 

GT-GAN 0.472 0.422 0.332 0.252 

TimeGAN 0.495 0.497 0.454 0.466 

RCGAN 0.493 0.498 0.500 0.441 

OURS 0.139 0.420 0.184 0.107 

50% 

GT-GAN 0.497 0.396 0.314 0.263 

TimeGAN 0.500 0.498 0.483 0.487 

RCGAN 0.500 0.498 0.500 0.475 

OURS 0.157 0.360 0.164 0.077 

70% 

GT-GAN 0.479 0.481 0.330 0.230 

TimeGAN 0.500 0.500 0.496 0.491 

RCGAN 0.498 0.500 0.500 0.380 

OURS 0.216 0.401 0.225 0.080 

As discussed earlier, a lower discriminative score indicates that the generated samples are statistically 

closer to real data and thus more difficult to distinguish. When the observation drop rate is relatively low (30%), 

most methods are able to preserve a certain level of distributional consistency, although noticeable performance 

differences already emerge across different generative paradigms. As the drop rate increases to 50% and further 

to 70%, the discriminative scores of many baseline methods increase substantially, indicating that their generated 

samples deviate more clearly from the real data distribution under more severe incompleteness. 
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In contrast, the proposed method consistently achieves lower discriminative scores across all datasets 

and missing-rate settings. Moreover, its performance exhibits a more gradual degradation trend as the observation 

drop rate increases, suggesting improved stability under increasingly incomplete observation conditions. These 

results indicate that the proposed framework more effectively captures the statistical characteristics of time series 

data when observations are sparse. 

Further dataset-level analysis reveals that different temporal dynamics pose distinct challenges for 

generative modeling. Datasets dominated by smooth or regular patterns tend to expose subtle artifacts such as 

phase shifts or amplitude distortions, while datasets characterized by strong stochastic fluctuations are more 

sensitive to over-smoothing or unrealistic variability. Despite these challenges, the proposed method maintains 

competitive or superior discriminative performance across diverse data characteristics, demonstrating its 

effectiveness in modeling time series distributions under irregular observation scenarios. 

 

V. CONCLUSIOSN 

This paper presents a diffusion-based generative framework for modeling multivariate time series under 

irregular observation settings. By integrating a Transformer encoder for global dependency modeling, a gated 

temporal convolutional network for local and multi-scale structure extraction, and a diffusion probabilistic process 

operating on structured representations, the proposed method provides a unified approach to time series generation 

in the presence of missing observations. Experimental results based on discriminative evaluation across multiple 

real-world datasets and varying observation drop rates demonstrate that the proposed framework consistently 

generates samples that are harder to distinguish from real data, and exhibits more stable performance as the degree 

of incompleteness increases. These results indicate that the proposed method effectively captures the underlying 

statistical characteristics of incomplete time series data, offering a promising direction for generative modeling 

under irregular observation conditions. 
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