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Abstract

Time series data in real-world systems are often affected by noise, missing observations, and complex temporal
dependencies, which pose significant challenges to accurate modeling and generation. To address these issues,
this paper proposes a diffusion-based framework for time series generation from a probabilistic generative
modeling perspective. The proposed framework integrates a Transformer encoder and a gated temporal
convolutional network to jointly capture global and local temporal dependencies. Specifically, the input time
series is first embedded with positional encoding and processed by a Transformer architecture to model long-
range temporal correlations through multi-head self-attention, after which the encoded representations are
decoded by a gated temporal convolutional network that employs dilated convolutions and gating mechanisms to
capture multi-scale temporal patterns. Based on the decoded representations, a diffusion probabilistic model is
constructed by learning a reverse denoising process from progressively noised data. During training, the model
learns to recover clean time series from noisy inputs at different diffusion steps, while during inference, realistic
time series samples are generated by iteratively denoising from pure noise. Experimental results demonstrate that
the proposed method effectively models complex temporal dynamics and exhibits strong robustness under noisy
and missing data scenarios.
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I. INTRODUCTION

Time series data are widely encountered in real-world systems such as communication networks,
industrial monitoring, finance, and energy management [1]. Accurate modeling and generation of time series are
critical for tasks including forecasting, anomaly detection, data completion, and system simulation [2]. However,
real-world time series often exhibit strong non-stationarity, complex temporal dependencies, and are frequently
corrupted by noise or missing observations due to sensor failures, transmission errors, or environmental
disturbances [3]. These characteristics significantly challenge conventional time series modeling methods.

Traditional statistical models, such as autoregressive and state-space approaches, rely on strong
assumptions about linearity and stationarity, which limit their effectiveness in complex real-world scenarios [4].
With the development of deep learning, neural network based methods, including recurrent neural networks
and temporal convolutional networks, have demonstrated improved representation capacity for temporal dynamics
[5, 6]. Nevertheless, most existing deep learning approaches focus on deterministic prediction or point estimation
and lack the ability to explicitly model the underlying data distribution and uncertainty, which is crucial for robust
generation and completion tasks.

Recently, generative modeling has emerged as a promising paradigm for time series analysis. By learning
the data distribution rather than producing single-point predictions, generative models can naturally capture
uncertainty and generate diverse samples. Generative adversarial networks have been applied to time series
generation, but their training instability and mode collapse issues limit their practical applicability [7]. In contrast,
diffusion probabilistic models have shown remarkable performance and training stability in image generation by
learning a gradual denoising process, making them an attractive alternative for generative modeling [8].

Motivated by these advances, this paper investigates diffusion-based generative modeling for time series
data. However, directly applying diffusion models to time series remains challenging due to the need to
simultaneously capture long-range temporal dependencies and fine-grained local temporal patterns. To address
this challenge, we propose a diffusion-based framework that integrates a Transformer encoder and a gated
temporal convolutional network. The Transformer module leverages multi-head self-attention to model global
temporal correlations, while the gated temporal convolutional network captures local and multi-scale temporal
structures through dilated convolutions and gating mechanisms. By combining these components within a
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diffusion probabilistic framework, the proposed method provides a unified solution for time series generation and
completion under noisy and missing data scenarios.

II. RELATED WORK

Time series modeling has been widely studied, with existing methods generally categorized into
traditional statistical models, deep learning based deterministic approaches, and generative models. Traditional
methods, such as autoregressive and state-space models, rely on assumptions of linearity and stationarity, which
limit their effectiveness in complex and non-stationary real-world scenarios. Deep learning approaches, including
recurrent neural networks, temporal convolutional networks, and Transformer-based models, have demonstrated
strong capability in modeling temporal dependencies. However, most of these methods focus on deterministic
prediction and do not explicitly model data uncertainty or generation mechanisms [9].

Generative models provide an alternative perspective by learning the underlying data distribution. While
generative adversarial networks and variational autoencoders have been applied to time series generation, they
often suffer from training instability or limited generation quality. Recently, diffusion probabilistic models have
emerged as a promising generative framework due to their stable training and iterative denoising formulation [10].
Nevertheless, effectively capturing both global temporal dependencies and local multi-scale patterns in time series
remains challenging. To address this issue, this work integrates diffusion modeling with a Transformer encoder
and a gated temporal convolutional network to jointly model global and local temporal structures.

III. METHODOLOGIES
3.1 Problem definition

Let X € R™F denote a multivariate time series of length T with F feature dimensions, where x, € RF
represents the observation at time step t. In real-world scenarios, the observed time series is often corrupted by
noise or contains missing values due to sensor failures, transmission errors, or external disturbances.

The objective of this work is to learn a probabilistic generative model that captures the underlying data
distribution p(X) of time series data, rather than producing deterministic point estimates. Such a model should be
capable of generating realistic time series samples and reconstructing corrupted or incomplete observations in a
unified framework.

Formally, given a partially observed or noisy time series X, the goal is to model the conditional
distribution p(X|X) and recover the clean time series representation. By learning the data generation mechanism
from a probabilistic perspective, the proposed approach enables both time series generation from noise and
effective completion under missing or corrupted data conditions.

3.2 Input

Given a multivariate time series X € , each observation x; is first mapped into a latent embedding
space through a linear projection, producing an embedded sequence E € R™¢, where d denotes the embedding
dimension. This transformation enables the model to represent heterogeneous input features in a unified latent
space.

RTXF

To retain temporal order information, positional encoding is incorporated into the embedded
representations. By explicitly encoding time-step information, the positional encoding allows the model to
distinguish different temporal positions and facilitates effective modeling of sequential dependencies. The
resulting representations, obtained by combining value embeddings and positional encodings, are used as the input
to the Transformer encoder. Figure 1 illustrates the overall architecture of the proposed framework.

3.3 Transformer encoder
Based on the embedded input representations obtained in Section 3.2, the Transformer encoder is
employed to model global temporal dependencies in the time series. Let
H® =E + P e R™¢, (1)
denote the initial input to the Transformer encoder, where E is the value embedding and P represents the
positional encoding.
The Transformer encoder updates the representations through stacked self-attention layers, allowing each
time step to attend to all other time steps in the sequence. The output of the I-th Transformer layer is given by
H® = TransformerLayer(H(~1), )
where the self-attention mechanism enables the model to capture long-range temporal correlations across the
entire sequence.
Through this process, the encoder produces context-aware representations H = H" that integrate global
temporal information, which are subsequently used for local modeling and generative learning.
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3.4 Gated temporal convolutional network

Although the Transformer encoder effectively captures global temporal dependencies, its self-attention
mechanism does not explicitly model local temporal continuity and multi-scale patterns. To complement global
modeling, a gated temporal convolutional network (GTCN) is employed to capture local and multi-scale temporal
dynamics.

Let H € RT*4 denote the context-aware representations produced by the Transformer encoder. The
GTCN applies one-dimensional dilated convolutions along the temporal dimension to model local dependencies
with different receptive fields. Specifically, two parallel convolutional branches are used to construct a gating
mechanism:

H = tanh (Conv¢(H)), G = o(Convy(H)), 3)
where Convy () and Conv, () denote temporal convolution operations with dilation, tanh (-) generates
candidate features, and o (+) is the sigmoid activation producing gating weights.

The final output of the gated temporal convolutional network is obtained by element-wise modulation:
Z=HQQG, 4
where © denotes element-wise multiplication. Through the gating mechanism, the network adaptively controls
information flow across different temporal scales, enabling effective modeling of local temporal structures. The
resulting representations Z serve as the input for subsequent diffusion-based generative modeling.
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Figurel: Overall architecture of the proposed diffusion-based time series generation framework

3.5 Diffusion based generative modeling
Based on the locally enhanced representations produced by the gated temporal convolutional network, a
diffusion probabilistic model is constructed to learn the generation mechanism of time series data. Let Z € RT*¢
denote the output representation of the GTCN. To facilitate diffusion modeling, the sequential representation Z is
first transformed into a two-dimensional structured representation through a sequence-to-image mapping
operation, which is motivated by classical time-delay embedding techniques originating from the work of Takens
[11].
I=7(2), &)
where | € and 7' (-) denotes a deterministic reshaping operation that preserves temporal structure.
The diffusion model defines a forward noising process on the image-like representation /, where
Gaussian noise is progressively added according to a predefined noise schedule:
I = Jal + 1 —aie,e ~N(0,D), (6)
with t € {1, ..., T} denoting the diffusion step and a; € (0,1) controlling the noise level.
The reverse process aims to recover the clean representation by learning a denoising function
parameterized by a neural network:

RHXW

€t = fB(It' t)' (7)
where fy(-) predicts the injected noise at each diffusion step. During training, the model is optimized by
minimizing the denoising loss:

Ly = Epelle = fo(, 3], (®)

which encourages accurate noise estimation across different diffusion steps.
During inference, the generation process starts from pure Gaussian noise and iteratively applies the
learned denoising function in reverse order, producing a clean image-like representation /. The generated
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representation is then transformed back to the sequential domain via the inverse mapping 7 ~1(-), yielding the
final time series output. Through this diffusion-based generative modeling, the proposed framework enables both
realistic time series generation and effective reconstruction under noisy or missing data scenarios.

IV. EXPERIMENTS

4.1 Experimental setup

This section conducts a systematic evaluation of the proposed generative method under irregularly
observed time series settings. The experiments cover multiple real-world and synthetic time series datasets, aiming
to examine the ability of generative models to capture data distributions and dynamic structures in the presence
of missing observations. The experiments are performed on four representative multivariate time series datasets,
including Weather, Electricity, Energy, and Stocks. These datasets exhibit diverse characteristics in terms of
temporal dynamics, noise levels, and inter-variable correlations, covering a wide range of typical patterns such as
dominant periodicity, trend variations and stochastic fluctuations. To characterize modeling difficulty under
incomplete observations, the experiments are conducted in irregular time series settings by randomly discarding
a fixed proportion of observations from each sequence. Specifically, observation drop rates of 30%, 50%, and
70% are considered, corresponding to different levels of data incompleteness. All methods are evaluated under
identical data splits, missing-rate settings, and training budgets to ensure fair comparisons.

4.2 Evaluation metric

To quantitatively assess the quality of generated time series under irregular observation settings, this
work adopts a discriminative evaluation protocol, which measures the distinguishability between real and
generated samples. This metric evaluates whether the generated sequences match the statistical characteristics of
real data, and has been widely used as an indirect but effective criterion for generative time series modeling.

Specifically, a binary discriminator D () is constructed to classify input time series samples as either real
or generated. Real and generated samples are mixed and then split into training and test sets. The discriminator is
trained on the training set and evaluated on the test set, yielding a classification accuracy denoted as Acc.

To provide a meaningful reference point corresponding to the case where real and generated samples are
indistinguishable, the discriminative score is defined as

Dis = |Acc—0.5]. 9)

When the generated samples closely match the real data distribution, the discriminator performs no better
than random guessing, resulting in Acc = 0.5 and thus Dis = 0. Conversely, a larger discriminative score
indicates that the generated samples are easier to distinguish from real data, implying greater distributional
discrepancy. Therefore, a lower discriminative score corresponds to higher generation quality.

4.3 Results analysis

In this subsection, the proposed method is compared with representative baseline models using the
discriminative evaluation protocol described in Section 4.2. All methods are evaluated under identical data splits,
missing-rate settings, and discriminator configurations to ensure fair comparison. The discriminative scores under
30%, 50%, and 70% observation drop rates are jointly reported in Table 1.

Table 1: Discriminative scores under different drop rates (best in bold).

Drop Rate Method Weather Electricity Energy Stocks
GT-GAN 0.472 0.422 0.332 0.252

30% TimeGAN 0.495 0.497 0.454 0.466
RCGAN 0.493 0.498 0.500 0.441

OURS 0.139 0.420 0.184 0.107

GT-GAN 0.497 0.396 0.314 0.263

50% TimeGAN 0.500 0.498 0.483 0.487
RCGAN 0.500 0.498 0.500 0.475

OURS 0.157 0.360 0.164 0.077

GT-GAN 0.479 0.481 0.330 0.230

70% TimeGAN 0.500 0.500 0.496 0.491
RCGAN 0.498 0.500 0.500 0.380

OURS 0.216 0.401 0.225 0.080

As discussed earlier, a lower discriminative score indicates that the generated samples are statistically
closer to real data and thus more difficult to distinguish. When the observation drop rate is relatively low (30%),
most methods are able to preserve a certain level of distributional consistency, although noticeable performance
differences already emerge across different generative paradigms. As the drop rate increases to 50% and further
to 70%, the discriminative scores of many baseline methods increase substantially, indicating that their generated
samples deviate more clearly from the real data distribution under more severe incompleteness.
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In contrast, the proposed method consistently achieves lower discriminative scores across all datasets
and missing-rate settings. Moreover, its performance exhibits a more gradual degradation trend as the observation
drop rate increases, suggesting improved stability under increasingly incomplete observation conditions. These
results indicate that the proposed framework more effectively captures the statistical characteristics of time series
data when observations are sparse.

Further dataset-level analysis reveals that different temporal dynamics pose distinct challenges for
generative modeling. Datasets dominated by smooth or regular patterns tend to expose subtle artifacts such as
phase shifts or amplitude distortions, while datasets characterized by strong stochastic fluctuations are more
sensitive to over-smoothing or unrealistic variability. Despite these challenges, the proposed method maintains
competitive or superior discriminative performance across diverse data characteristics, demonstrating its
effectiveness in modeling time series distributions under irregular observation scenarios.

V. CONCLUSIOSN

This paper presents a diffusion-based generative framework for modeling multivariate time series under
irregular observation settings. By integrating a Transformer encoder for global dependency modeling, a gated
temporal convolutional network for local and multi-scale structure extraction, and a diffusion probabilistic process
operating on structured representations, the proposed method provides a unified approach to time series generation
in the presence of missing observations. Experimental results based on discriminative evaluation across multiple
real-world datasets and varying observation drop rates demonstrate that the proposed framework consistently
generates samples that are harder to distinguish from real data, and exhibits more stable performance as the degree
of incompleteness increases. These results indicate that the proposed method effectively captures the underlying
statistical characteristics of incomplete time series data, offering a promising direction for generative modeling
under irregular observation conditions.
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