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Abstract: We present a numerical and theoretical study of the Benjamin equation using a 

Fourier pseudo-spectral discretization in space. The approach is based on the discrete Fourier 

series and exploits spectral convergence for smooth, periodic initial data. We analyze the 

stability and convergence of the scheme and validate it through a series of numerical 

simulations. Our results demonstrate the high accuracy and stability of the method, with near-

conservation of discrete invariants. A comparison was made with the existing results, and it 

behaves better. This work provides a foundation for further investigating dispersive nonlinear 

wave equations using spectral techniques. 
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I. INTRODUCTION 

Evolution equations are crucial in modelling dynamic processes across various disciplines, including 

biology, engineering, physics, technology, and the social sciences. As a result, the qualitative and quantitative 

analysis of such equations constitutes a significant area of research in both pure and applied mathematics. 

This study focuses on the Benjamin equation, a nonlinear dispersive model that describes the propagation 

of internal waves in a two-layer fluid system (Benjamin, 1996). The equation captures essential features of wave 

motion in stratified fluids, combining nonlinearity with nonlocal dispersive effects introduced via the Hilbert 

transform. Due to its rich mathematical structure and relevance to real-world phenomena, the Benjamin equation 

continues to attract substantial analytical and computational interest. 

 

We consider the following form of the Benjamin equation on a periodic domain 𝑥 ∈[-ℓ, ℓ]: 

𝜕𝑡𝑢 + 𝛼ℋ𝜕𝑥
2𝑢 +  𝛽𝜕𝑥

3𝑢 +  𝑢𝜕𝑥𝑢  = 0                                            (1.1)     
where ℋ denotes the Hilbert transform, and 𝛼 and 𝛽 are positive constants characterizing dispersion. 

 

The well-posedness of the associated Cauchy problem has been widely studied; see, for example, (Chen 

et. al., 2011; Li and Wu, 2010, Linares, 1999; Urrea, 2013) and references therein. However, obtaining explicit 

analytical solutions is generally infeasible due to the interplay between nonlinearity and nonlocal dispersion. 

Consequently, numerical methods have become essential tools for exploring the dynamics of the Benjamin 

equation. 

Several numerical schemes have been developed for both the stationary and time-dependent versions of 

the problem. A key challenge in designing these methods lies in handling the nonlocal Hilbert transform, and the 

unbounded spatial domain when the equation is posed on the real line (Albert et. al., 1999; Calvo and Akylas, 

2003; Dougalis et. al., 2015; Dougalis et. al., 2016; Kalisch and Bona, 2000). 

Among the various approaches, spectral methods have proven particularly effective for periodic 

problems. (Kalisch and Bona, 2000) introduced a Fourier spectral method in which the Hilbert transform is treated 

efficiently in the frequency domain, leading to diagonal operators that simplify computation. (Albert et. al., 1999) 

conducted numerical simulations on vast spatial domains and obtained results consistent with earlier spectral 

schemes. (Calvo and Akylas, 2003) applied fourth-order finite difference discretizations to investigate interface 

waves governed by the Benjamin equation. (Dougalis et. al., 2015; Dougalis et. al., 2016) proposed a hybrid 

technique combining Fourier-type discretizations with finite-element methods and continuation algorithms. In 

these works, the infinite spatial domain was truncated to a finite interval with a large length L to accommodate 

numerical implementation. More recently, (Shindin et. al., 2021) employed a modified transmission conditions 

(MTC) scheme to simulate the Benjamin equation on unbounded domains directly. 
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In this work, we adopt a Fourier pseudo-spectral method in a periodic domain to numerically solve the 

Benjamin equation. This approach efficiently handles the nonlocal Hilbert term while maintaining high accuracy 

for smooth periodic solutions. We also compare our results with those obtained from existing numerical 

techniques to assess the performance and reliability of the proposed method. The structure of this paper is as 

follows: Section 2 covers the Fourier pseudo-spectral approximation scheme. Section 3 presents numerical 

simulation. Finally, Section 4 concludes the paper. 

 

II. FOURIER PSEUDO-SPECTRAL APPROXIMATION 

 2.1 The periodic Benjamin equation: We apply the standard Fourier expansions to solve the Benjamin equation 

with the periodic boundary conditions (Benjamin, 1996; Dougalis, 2015): 

𝜕𝑡𝑢 + 𝛼ℋ𝜕𝑥
2𝑢 +  𝛽𝜕𝑥

3𝑢 +  𝑢 𝜕𝑥𝑢  = 0,                           𝑢(𝑥, 0) = 𝑢0(𝑥)                  (2.1𝑎) 
               𝑢(𝑥, 𝑡)  𝑖𝑠 2ℓ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑖𝑛 𝑥,                                                                                                  (2.1𝑏) 
where operator ℋ is Hilbert transform, defined by the principle value integral: 

ℋ[𝑢](𝑥) =
𝑝. 𝑣

2ℓ
∫ 𝑐𝑜𝑡 (

𝑦ℓ

2𝜋
) (𝑥 − 𝑦)𝑑𝑦,                       𝑥 ∈ [−ℓ, ℓ],

ℓ

−ℓ

 

The Benjamin equation is a model that describes how internal waves move in a two-fluid system. The differential 

equation (2.1) is conservative. Two functionals 

ℱ[𝑢](𝑥) = ∫ (
1

2
(|𝑢|2 − 𝛼𝑢ℋ[𝑢𝑥] + 𝛽|𝑢𝑥|

2) +
1

3
𝑢3) 𝑑𝑥                                           (2.2𝑎)

ℓ

−ℓ

 

 

𝒱[𝑢] =
1

2
∫|𝑢|2𝑑𝑥                                                                                                              (2.2𝑏)

ℓ

−ℓ

 

are formally preserved along with solutions to (2.1a). This can be verified by differentiating  

(2.2a) and (2.2b) with respect to t and then integrating by parts. 

 

2.2 The numerical scheme: To solve equation (2.1) numerically, we approximate the unknown solution u(x,t) 

by the trigonometric polynomial 𝑢𝑁(𝑥, 𝑡) of degree N and choose unknown functions 𝑢𝑁,𝐾(𝑡), so that differential 

equation (2.1a) is satisfied at the points  

𝑥𝑘 =
ℓ(2𝑘 − 𝑁 − 1)

2𝑁 + 1
,           𝑘 = 0,1, …… ,2𝑁 + 1 

That is 

𝜕

𝜕𝑡
𝑢𝑁(𝑥𝑘 , 𝑡) = −

𝜕

𝜕𝑥
𝑢𝑁(𝑥𝑘 , 𝑡) −

𝜕

𝜕𝑥
𝑢𝑁
2 (𝑥𝑘 , 𝑡) + 𝛼

𝜕2

𝜕𝑥2
ℋ[𝑢𝑁](𝑥, 𝑡) + 𝛽

𝜕3

𝜕𝑥3
𝑢𝑁(𝑥𝑘 , 𝑡)     (2.3𝑎) 

  

𝑘 = 0,1, …… ,2𝑁 + 1 

This gives the system of 2(N+1) ordinary differential equations for 2(N+1) unknown functions. Adding to (2.3a) 

the initial conditions  

             𝑢𝑁(𝑥𝑘 , 0) = 𝑢0(𝑥𝑘),                𝑘 = 0,1, …… ,2𝑁 + 1                                                                    (2.3𝑏) 
this leads to Cauchy's initial value problem, which can be integrated numerically in time.    

 

2.3. The numerical scheme in the modal space: It is a known fact that one-to-one correspondence between 

values of trigonometry polynomials at 𝑥𝑘 and discrete Fourier coefficients. The equation (2.3) can be written 

explicitly using the inverse and direct Discrete Fourier Transforms. The formula leads to the discrete Fourier 

coefficients of the m-th order spatial derivative of 𝑢𝑁(𝑥, 𝑡), and are given explicitly by: 

[
𝜕𝑚

𝜕𝑥𝑚
𝑢𝑁(𝑥, 𝑡)]
̃

𝑛
= (

𝑖𝜋𝑛

ℓ
)
𝑚

�̃�𝑛,        𝑛 = −𝑁,…… ,𝑁                                              (2.4) 

and 

 

               [ℋ[𝑢𝑁(𝑥, 𝑡)]𝑥]̃
𝑛    =  −𝑖𝑠𝑔𝑛(𝑛)�̃�𝑛(𝑡),      𝑛 = −𝑁,…… ,𝑁                                  (2.5) 

 Since there are no simple formulas for the discrete Fourier coefficients of the quadratic  

nonlinearity 𝑢𝑁
2 (𝑥, 𝑡). the idea is first to compute  𝑢𝑁

2 (𝑥, 𝑡) in physical space and then  

transform the results back to the Fourier space using the direct Discrete Fourier Transform formula. If we denote 

the discrete Fourier coefficient of 𝑢𝑁
2 (𝑥, 𝑡) by �̃�𝑛(𝑡), then the system (2.3) 

can be written explicitly as: 
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𝑢𝑛
′ (𝑡) = (

𝑖𝜋𝑛

ℓ
) [(1 − 𝛼

𝜋|𝑛|

ℓ
+ 𝛽

𝜋2𝑛2

ℓ2
) �̃�𝑛(𝑡) + �̃�𝑛(𝑡)] ,   𝑛 = −𝑁,…… ,𝑁           (2.6𝑎)      

with the initial conditions 

 �̃�𝑛(0) =
1

2𝑁+1
∑ 𝑢0(𝑥𝑛)
2𝑁
𝑘=0 𝑒−

𝑖𝜋𝑛

ℓ
𝑥𝑛 ,                  𝑛 = −𝑁,…… ,𝑁                                             (2.6𝑏) 

we see that the initial value problem (2.3) has a straightforward representation (2.6) in the Fourier space. 

 

2.4. The numerical scheme in the physical space: We write the compact form of equation (2.6) as follows: 

𝑈′ = �̃�[(𝐼 − 𝛼�̃� − 𝛽�̃�2)𝑈 + �̃�],          �̃� (0) =  𝑈0                                       (2.7) 

Where in modal space, �̃� represents 
𝜕

𝜕𝑥
  and 𝐻 stands for 

𝜕

𝜕𝑥
ℋ they yield a diagonal matrix and 𝑈 is vector matrice. 

We denote 𝑈 = (𝑢𝑁,0, … , 𝑢𝑁,2𝑁) ∈  ℂ
2𝑁+1. Let 

𝐹 = (
𝑒
𝑖𝜋(−𝑁)

ℓ
𝑥0 ⋯ 𝑒

𝑖𝜋(+𝑁)
ℓ

𝑥0

⋮ ⋱ ⋮

𝑒
𝑖𝜋(−𝑁)

ℓ
𝑥2𝑁 ⋯ 𝑒

𝑖𝜋(+𝑁)
ℓ

𝑥2𝑁

) ∈  ℂ(2𝑁+1)×(2𝑁+1) 

using the Fourier matrix F and the inverse and direct discrete Fourier transform, then 

           𝑈 = 𝐹𝑈,̃               𝑈 =  
1

2𝑁+1
𝐹∗𝑈                                                                                             (2.8)  

∗ mean conjugation, since formula (2.8) holds for any vector 𝑈 ∈ ℂ2𝑁+1, then 𝐹−1 = 
1

2𝑁+1
𝐹∗.  

This property gives us leverage to rewrite equation (2.7) in terms of vector U: 

𝑈′ = 𝐷[(𝐼 − 𝛼𝐻 − 𝛽𝐷2)𝑈 + 𝑈2],              𝑈(0) = 𝑈0                                                   (2.9) 
The Fourier differentiation matrix D and its coefficient can be computed explicitly using 

𝑑𝑖,𝑗 =

{
 
 

 
 (𝑁 + 1)𝑠𝑖𝑛 (

2𝜋(𝑖 − 𝑗)
2𝑁 + 1

𝑁) − 𝑁𝑠𝑖𝑛 (
2𝜋(𝑖 − 𝑗)
2𝑁 + 1

(𝑁 + 1)) ,

2ℓ(2𝑁 + 1)𝑠𝑖𝑛2 (
𝜋(𝑖 − 𝑗)
2𝑁 + 1

)
,       𝑖 ≠ 𝑗

0,                                    𝑖 = 𝑗

              (2.10) 

where 0 ≤ 𝑖, 𝑗 ≤ 2𝑁.  
 

2.5. Stability: We know that the exact solution of equation (2.1) is conservative, i.e  

along the trajectories of (2.1), two first integrals ℱ[𝑢] and 𝒱[𝑢] are exactly preserved. In particular, the integral 

𝒱[𝑢] shows that the 𝐿𝑃
2 (−ℓ, ℓ) norm of 𝑢 remains bounded for all times 𝑡 ≥ 0. In general, a numerical 

discretization does not have to be automatically conservative. Fortunately, in the case of the discretization (2.3), 

the numerical solution has two discrete first integrals that correspond to ℱand 𝒱. 

Theorem 2.1. The approximation solution 𝑢𝑁(𝑥, 𝑡) satisfies: 

ℱ𝑁[𝑢𝑁](𝑡) =
2ℓ

2𝑁 + 1
∑(

1

2
(𝑢𝑁

2 (𝑥𝑛) − 𝛼𝑢(𝑥𝑛)ℋ[𝑢𝑁𝑥](𝑥𝑛) + 𝛽𝑢𝑁𝑥
2 (𝑥𝑛)) +

1

3
𝑢𝑁
3 (𝑥𝑛))

2𝑁

𝑛=0

= ℱ𝑁[𝑢𝑁](0) ,              𝑡 ≥ 0,                                                                   (2.11𝑎) 
 

            𝒱𝑁[𝑢𝑁](𝑡) =
ℓ

2𝑁+1
∑ 𝑢𝑁

2 (𝑥𝑛) = 𝒱𝑁[𝑢𝑁](0)
2𝑁
𝑛=0 ,          𝑡 ≥ 0,                                       (2.11𝑏) 

Proof: We omit the proof. 

Formulas (2.11) are significant because they demonstrate that the numerical solution preserves key qualitative 

features of the exact solution. In particular, formula (2.11b) shows that the discrete 𝐿𝑃
2 (−ℓ, ℓ) norm of the 

numerical solution remains invariant over time. This implies that the solution does not exhibit unbounded growth 

as t increases, thereby confirming the stability of the numerical scheme (2.3). 

 

III.  NUMERICAL SIMULATION 

We now present several numerical examples to validate the accuracy and stability of the proposed method. 

 

Example 1: Exact Solution with Cosecant Initial Data 

We introduce a source term such that the modified equation admits the exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑐𝑜𝑠𝑒𝑐 (
ℓ

2𝜋
𝑥). 

The numerical solution using N=65 collocation points is compared to the exact solution over 𝑡 ∈ [0,5]. The error 

remains below 10−5 throughout the domain. 
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Figure 1: Numerical solution (left) and pointwise error (right), ∝, 𝛽 = 1. 
 

Example 2: Exact Solution with Secant Initial Data 

Using a similar setup with 𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑠𝑒𝑐 (
ℓ

2𝜋
𝑥). The numerical scheme again produces a stable solution, with 

errors of order 10−4. 

 
Figure 2: Numerical solution (left) and pointwise error (right). 

 

Example 3: Solitary Wave and Conservation Testing 

We initialize the solution with a known solitary wave profile from the KdV equation and observe the behaviour 

under the Benjamin equation. The invariants ℱ𝑁 and 𝒱𝑁 exhibit near-conservation despite non-conservative time-

stepping. 
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Figure 3: Numerical solution (left) and deviations in invariants (right). 

 

Example 4. Comparison with Finite Difference Method 

To benchmark our pseudo-spectral scheme, we implemented a second-order finite difference (FD) discretization 

of the Benjamin equation with central differencing for spatial derivatives and RK4 in time. For the test case in 

Example 1, the FD method required N=512 grid points to achieve comparable accuracy (error 10−5) to our 

spectral scheme using N=65. 

 

 
Table1: Comparison of accuracy for Example 1 between pseudo-spectral and FD methods. 

 

IV. CONCLUSION 

We have presented a Fourier pseudo-spectral method for solving the Benjamin equation in a periodic 

domain. The method leverages spectral accuracy for smooth solutions and exhibits favourable conservation and 

stability properties. Numerical experiments validate the theoretical predictions and show excellent agreement 

with known solutions. Future extensions may include conservative time integrators, adaptation to non-periodic 

settings, and applications to more general nonlinear dispersive models. 

We developed and tested a Fourier pseudo-spectral method for numerically solving the Benjamin 

equation under periodic boundary conditions. The scheme, expressed in both modal and physical space, was 

analyzed for accuracy and stability. A split formulation using an integrating factor enhances time integration 

stability. Comparisons with finite difference methods show spectral methods achieve high accuracy with fewer 

grid points. Our simulations demonstrate the method’s ability to conserve key invariants, resolve solitary waves, 

and maintain long-time accuracy. This confirms its suitability for efficient and reliable simulation of dispersive 

nonlinear equations such as the Benjamin equation. 
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