k-Total Modulo Labeling Graphs

S.YESU DOSS PHILIP¹, B.PONMANI², AND M.KAVIYA³

ABSTRACT. Let G be a graph. Let $f:V(G) \to \{0,1,2,\ldots,k-1\}$ be a map where $k \in N$ and k > 1. For each edge uv, assign the label $(f(u) + f(v) + f(uv)) \mod k$ where k > 1. f is called a k-total modulo labeling of G if $|t_m(i) - t_m(j)| \le 1$, $i, j \in \{0, 1, 2, \ldots, k-1\}$ where $t_m(x)$ denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total modulo labeling is called a k-total modulo graphs. We investigate k-total modulo labeling of some graphs and study the 3-total modulo labeling behaviour of star, bistar, complete bipartiate graph, comb, wheel, helm, armed crown etc.

Date of Submission: 05-04-2025 Date of acceptance: 16-04-2025

1. Introduction

All graphs in this paper are finite, simple and undirected only. Cahit [1] introduced notion of cordial labeling of graphs. The cocept of k-difference cordial graph was introduced in [4]. Recently Ponraj etal [4] has been introduced the concept of k-total difference cordial graphs. Motivated by this, we introduce k-total modulo labeling of graphs. Also we prove that every graph is a subgraph of a connected k-total modulo labeling graphs and investigate 3-total modulo labeling of sevarel graphs like path, star, bistar, complete bipartite graph etc.

2. k-Total modulo labeling of graphs

Definition 2.1. Let G be a graph. Let $f: V(G) \to 0, 1, 2, \ldots, k-1$ be a map where $k \in N$ and k > 1. For each edge uv, assign the label $(f(u) + f(v) + f(uv)) \mod k$ where k > 1. f is called a k-total modulo labeling of G if $|t_{ml}(i) - t_{ml}(j)| \le 1$, $i, j \in 0, 1, 2, \ldots, k-1$ where $t_{ml}(x)$ denotes the total number of vertices and the edges labeled with x. A graph with admits a k-total modulo labeling is called a k-total modulo graphs.

²⁰⁰⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. star, bistar, complete bipartiate, wheel, helm, armed crown.

3. Preliminaries

Definition 3.1. Armed crown AC_n is the graph obtained from the cycle $C_n : u_1u_2 \dots u_nu_1$ with $V(AC_n) = V(C_n) \cup \{v_i, w_i : 1 \le i \le n\}$ and $E(AC_n) = E(C_n) \cup \{u_iv_i, v_iw_i : 1 \le i \le n\}$.

Definition 3.2. A bipartite graph is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . If G contains every edge joining V_1 and V_2 , then G is a complete bipartite graph. If $|V_1| = m$ and $|V_2| = n$, then the complete bipartite graph is denoted by $K_{m,n}$.

Definition 3.3. $K_{1,n}$ is called a star.

Definition 3.4. The graph $W_n = C_n + K_1$ is called a wheel. In a wheel, a vertex of degree 3 is called a rim vertex. A vertex which is adjacent to all the rim vertices is called the central vertex. The edges with one end incident with the rim and the other incident with the central vertex are called spokes.

Definition 3.5. The helm H_n is obtained from a wheel W_n by attaching a pendent edge at each vertex of the cycle C_n . A closed helm is the graph obtained from a helm by joining each pendent vertex to form a cycle.

Definition 3.6. The graph $C_n \odot K_1$ is called a *crown*.

Definition 3.7. The Lilly graph $I_n : n \geq 2$ is constructed by 2 stars $2K_{1,n}, n \geq 2$, joining 2 path graphs $2P_n, n \geq 2$ with sharing of a common vertex. Let $V(I_n) = \{u_i, v_i : 1 \leq i \leq n\} \bigcup \{x_i : 1 \leq i \leq n\} \bigcup \{y_i : 1 \leq i \leq n-1\}$ and $E(I_n) = \{x_n u_i, x_n y_i : 1 \leq i \leq n\} \bigcup \{x_i x_{i+1} : 1 \leq i \leq n-1\} \bigcup \{x_n y_1\} \bigcup \{y_i y_{i+1} : 1 \leq i \leq n-2\}.$

4. Main Results

Remark. 2- total modulo labeling graph is 2-total product cordial graph.

Theorem 4.1. The crown $C_n \odot K_1$ is 3-total modulo labeling for all values of n.

Proof. Let C_n be the cycle $u_1, u_2, \ldots, u_n u_1$. Let $V(C_n \odot K_1) = V(C_n) \bigcup v_i : 1 \le i \le n$ and $E(C_n \odot K_1) = E(C_n) \bigcup u_i v_i : 1 \le i \le n$.

Case 1. $n \equiv 0 \pmod{3}$.

Assign the label 1 to the cycle vertices $u_1, u_2, ..., u_n$. Next we move to

the pendent vertices v_i . Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{2n}{3}}$. Next assign 1 to the remaining vertices $v_{\frac{2n+3}{3}}, v_{\frac{2n+6}{3}}, \ldots, v_n$.

Case 2. $n \equiv 1 \pmod{3}$.

Assign the label 1 to the cycle vertices u_1, u_2, \ldots, u_n . Next we move to the pendent vertices v_i . Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{4n-1}{3}}$. Next assign 1 to the remaining vertices $v_{\frac{4n-4}{3}}, v_{\frac{4n-1}{3}}, \ldots, v_n$.

Case 3. $n \equiv 2 \pmod{3}$.

Assign the label 1 to the cycle vertices u_1, u_2, \ldots, u_n . Next we move to the pendent vertices v_i . Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{2n-1}{3}}$. Next assign 1 to the remaining vertices $v_{\frac{2n+2}{3}}, v_{\frac{2n+5}{3}}, \ldots, v_n$.

Values of n	$t_{ml}(0)$	$t_{ml}(1)$	$t_{ml}(2)$	
$n \equiv 0 \pmod{3}$	$\frac{4n}{3}$	$\frac{4n}{3}$	$\frac{4n}{3}$	
$n \equiv 1 \pmod{3}$	$\frac{4n-1}{3}$	$\frac{4n-1}{3}$	$\frac{4n+2}{3}$	
$n \equiv 2 \pmod{3}$	$\frac{4n+1}{3}$	$\frac{4n+1}{3}$	$\frac{4n-2}{3}$	
Table 1				

Theorem 4.2. All Wheels are 3-total modulo labeling.

Proof. Let $W_n = C_n + K_1$ where C_n is the cycle $u_1u_2...u_nu_1$ and $V(K_1) = \{u\}$. Assign the label 2 to the central vertex u and assign the label 1 to the all the rim vertices $u_i(1 \le i \le n)$. Clearly $t_{ml}(0) = t_{ml}(1) = \frac{3n}{3}$ and $t_{ml}(2) = \frac{3n+3}{3}$. Hence W_n is 3-total modulo labeling.

Theorem 4.3. Helms H_n is 3-total modulo labeling.

Proof. Helm H_n is obtained from the wheel $W_n = C_n + K_1$ where C_n is the cycle $u_1u_2 \ldots u_n$ and $V(K_1) = \{u\}$ by attaching pendent edges to the rim vertices. Let v_1, v_2, \ldots, v_n be the pendent vertices adjacent to u_1, u_2, \ldots, u_n respectively.

Fix the label 2 to the central vertex and 1 to the rim vertices u_1, u_2, \ldots, u_n Case 1. $n \equiv 0 \pmod{3}$.

Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{n}{3}}$. Next assign the label 1 to the vertices $v_{\frac{n+3}{2}}, v_{\frac{n+6}{2}}, \ldots, v_n$.

Case 2. $n \equiv 1 \pmod{3}$.

Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{n-1}{3}}$. Next assign the label 1 to the remaining vertices $v_{\frac{n+2}{3}}, v_{\frac{n+5}{4}}, \ldots, v_n$.

Case 3. $n \equiv 2 \pmod{3}$.

Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{n-1}{3}}$ and assign the label 1 to the vertices $v_{\frac{n+1}{4}}, v_{\frac{n+4}{4}}, \ldots, v_n$.

The table 2 given below shows that this labeling f is a 3-total modulo labeling of H_n .

Values of n	$t_{ml}(0)$	$t_{ml}(1)$	$t_{ml}(2)$
$n \equiv 0 \pmod{3}$	$\frac{5n}{3}$	$\frac{5n}{3}$	$\frac{5n+3}{3}$
$n \equiv 1 \pmod{3}$	$\frac{5n+1}{3}$	$\frac{5n+1}{3}$	$\frac{5n+1}{3}$
$n \equiv 2 \pmod{3}$	$\frac{5n+2}{3}$	$\frac{5n+2}{3}$	$\frac{5n-1}{3}$

Table 2

Example 4.1. A 3-total modulo labeling of H_n is shown in Figure 1

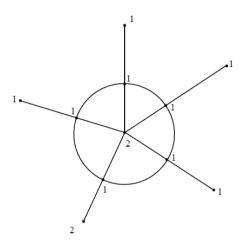


Figure 1

Theorem 4.4. AC_n is 3-Total modulo labeling for all n

Proof. Clearly AC_n has 3n vertices and 3n edges. Fix the label 1 to all the cycle vertices $u_1u_2\ldots u_n$.

Case 1. n is odd.

Next assign the label 2 to the all the vertices with degree 2. That is assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{n-1}{2}}$ and $w_1, w_2, \ldots, w_{\frac{n-1}{2}}$.

Now we assign the label 1 to all the pendent vertices $v_{\frac{n+1}{2}}, v_{\frac{n+3}{2}}, \ldots, v_n$ and $w_{\frac{n+1}{2}}, w_{\frac{n+3}{2}}, \ldots, w_{n-1}$. The last vertex w_n receive the label 2 when n is odd.

Case 2. n is even.

Assign the label 2 to the vertices $v_1, v_2, \ldots, v_{\frac{n}{2}}$ and $w_1, w_2, \ldots, w_{\frac{n}{2}}$. Now we assign the label 1 to the vertices $v_{\frac{n+4}{2}}, v_{\frac{n+4}{2}}, \ldots, v_n$ and $w_{\frac{n+2}{2}}, w_{\frac{n+4}{2}}, \ldots, w_n$.

The table 3 given below establish that this vertex labeling pattern is a 3 total modulo labeling.

Values of n	$t_{ml}(0)$	$t_{ml}(1)$	$t_{ml}(2)$
n is odd	$\frac{6n}{3}$	$\frac{6n}{3}$	$\frac{6n}{3}$
n is even	$\frac{6n}{3}$	$\frac{6n}{3}$	$\frac{6n}{3}$

Table 3

Theorem 4.5. The complete bipartite graph $K_{2,n}$ is k-total modulo labeling.

Proof. Let $V_1 = u, v$ and $V_2 = u_1, u_2, \ldots, u_n$ where V_1, V_2 is the bipartition of $K_{2,n}$. We now give the vertex labeling. Assign the label 2 to the vertex u. Next assign the label 1 to the vertices v and u_1, u_2, \ldots, u_n . It is easy to verify that $t_{ml}(0) = \frac{3n}{3}, t_{ml}(1) = t_{ml}(2) = \frac{3n+3}{3}$.

Theorem 4.6. Any star $K_{1,n}$ is 3-Total modulo labeling except $n \equiv 1 \pmod{3}$

Proof. Let $V(K_{1,n}) = \{u, u_i : 1 \le i \le n\}$ and $E(K_{1,n}) = \{uu_i : 1 \le i \le n\}$. Clearly $K_{1,n}$ has $|V(K_{1,n}) + E(K_{1,n})| = 2n + 1$ vertices and edges.

Case 1. $n \equiv 0 \pmod{3}$.

Assign the label 1 to the vertex u. Then assign the label 2 to the vertices $u_1, u_2, \ldots, u_{\frac{n}{3}}$. We now assign the label 1 to the remaining vertices $u_{\frac{n+3}{3}}, u_{\frac{n+6}{3}}, \ldots, u_n$.

Case 2. $n \equiv 2 \pmod{3}$.

Assign the label 1 to the vertex u. Then assign the label 2 to the vertices $u_1, u_2, \ldots, u_{\frac{n+1}{3}}$. Next assign the label 1 to the remaining vertices $u_{\frac{n+4}{3}}, u_{\frac{n+7}{3}}, \ldots, u_n$.

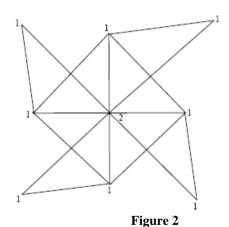
The table 4 given below establish that this vertex labeling pattern is a 3 total modulo labeling.

Values of n	$t_{ml}(0)$	$t_{ml}(1)$	$t_{ml}(2)$	
$n \equiv 0 \pmod{3}$	$\frac{2n}{3}$	$\frac{2n+3}{3}$	$\frac{2n}{3}$	
$n \equiv 2 \pmod{3}$	$\frac{2n-1}{3}$	$\frac{2n+2}{3}$	$\frac{2n+2}{3}$	
Table 4				

Theorem 4.7. The Flower graph Fl_n is 3-total modulo labeling for all n

Proof. Let $W_n = C_n + K_1$ where C_n is the cycle $u_1u_2 \dots u_nu_1$ and $V(K_1) = u$. The Helm H_n is a graph with $V(H_n) = V(W_n)$ $\cup \{V_i : 1 \le i \le n\}$ and $E(H_n) = E(W_n) \cup \{u_iv_i : 1 \le i \le n\}$. The Flower Fl_n is obtained from H_n by joining v_i to u $(1 \le i \le n)$. We now assign the labels to the vertices as follows. Assign label 2 to the vertices u and 1 to the vertices u_1, u_2, \dots, u_n . Next assign the label 1 to the vertices v_1, v_2, \dots, v_n . Clearly $t_{ml}(0) = t_{ml}(1) = \frac{6n}{3}, t_{ml}(2) = \frac{6n+3}{3}$. \square

Example 4.2. A 3-total modulo labeling of Fl_4 is shown in Figure 2



Theorem 4.8. The Lilly graph I_n is 3-total modulo labeling except $n \in 3, 6, \ldots, 3t$

Proof. Case 1. $n \equiv 1 \pmod{3}$.

Take the vertex set and edge set as in definition 3.7. Clearly $|V(I_n)| + |E(I_n)| = 8n-3$. Assign the label 1 to the path vertices $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_{n-1}$. Next we assign the label 2 to the vertices u_1, u_2, \ldots, u_n and assign the label 1 to the vertices v_1, v_2, \ldots, v_n .

Case 2. $n \equiv 2 \pmod{3}$.

Assign the label 1 to the path vertices $x_1, x_2, ..., x_n, y_1, y_2, ..., y_{n-1}$.

Next we assign the label 2 to the vertices u_1, u_2, \ldots, u_n and assign the label 1 to the vertices v_1, v_2, \ldots, v_n .

Clearly
$$t_{df}(0) = t_{df}(1) = t_{df}(2) = 2n - 1$$
, $t_{df}(3) = 2n$.

Example 4.3. A 3-total modulo labeling of I_5 is shown in Figure 3

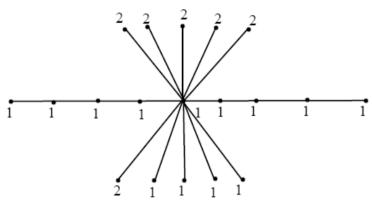


Figure 3

References

- I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- [3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
- [4] R.Ponraj, S.Yesu Doss Philip and R.Kala k- total difference cordial labeling of graphs, Journal of Algorithms and Computation, 1(2019), 121-128.
- [5] R.Ponraj, J.Maruthamani and R.Kala, k-total prime cordial labeling of graphs, Journal of Algorithms and Combutation, 50(2018), 143-149.