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Abstract

This paper proposes the use of a Support Vector Machine (SVM) model to analyze and mitigate interference
among FM broadcast radio stations, using a case study of five existing stations. Key parameters, including
geographic coordinates, frequency, transmission power, forward power, mast height, and antenna type, were
used as input features to train the model. To address class imbalance in the dataset, Synthetic Minority
Oversampling Technique (SMOTE) was employed, ensuring robust predictions of interference levels categorized
as low, moderate, or high. The SVM model, trained with an RBF kernel, achieved a high classification accuracy
of 94%, with performance metrics indicating excellent precision, recall, and FI-scores across all classes.
Predictions revealed that stations with overlapping frequencies and close geographic proximity experienced
higher interference levels, while stations with significant separation exhibited lower interference. The study
demonstrates the potential of machine learning in optimizing FM broadcast networks, offering a scalable solution
to interference mitigation and enhancing signal quality.
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L. Introduction

The field of radio broadcasting plays a pivotal role in disseminating information, entertainment, and
culture to diverse audiences across the globe. In this context, the Frequency Modulation (FM) band, known for
its superior sound quality and relatively long-range transmission, has been a cornerstone of the broadcasting
industry for decades. However, the ever-growing demand for radio services, coupled with the increasing number
of FM stations in operation, has brought to the forefront an issue of paramount importance: interference within
the FM band (Wayne Tomasi, 2002).

Interference within the FM band refers to the unintended overlap and disturbance of broadcast signals
from multiple stations on the same or adjacent frequencies. This phenomenon can result in reduced signal quality,
degraded reception, and, in extreme cases, total loss of communication. Such interference is detrimental not only
to broadcasters but also to the listening public, who depend on clear, uninterrupted signals for various purposes,
including news, music, emergency alerts, and educational content (ITU, 2004).

The FM Radio broadcast range 87.5-108.5MHz is most suited for high-density locations where
transmission distance to an audience is minimal. Major cities and regional towns have adopted FM Radio or
commercial radio as an alternative to long-wave AM broadcasts (Fadeyi 1. O., 2014).

FM (Frequency Modulation) broadcast radio antennas are essential components of radio broadcasting
systems. These antennas serve the purpose of transmitting FM radio signals efficiently and effectively, ensuring
that radio broadcasts reach their intended audience with high-quality audio fidelity. Here, we'll discuss the key
aspects of FM broadcast radio antennas (D. S. Ziya, 2018).

The main objective of this paper is to develop a machine learning-based model for analyzing and mitigating
interference among FM broadcast stations. The main contribution of this paper include:

1. It provides a comprehensive assessment of the coverage areas of five selected FM broadcast stations.

il. It evaluates the interference levels among these stations to identify overlapping zones and signal
disruptions.

iii. It develops and trains a machine learning model capable of accurately predicting interference zones within
the FM band.

iv. It proposes and validates an interference mitigation strategy through simulation-based techniques to

enhance broadcast quality and spectrum efficiency.

The remainder of this paper is structured as follows: Section 2 reviews related work on the analysis and the mitigation
of interference among FM broadcast stations. Section 3 outlines the methodology used in achieving the stated main
objective. Results and discussion, as well as the validation of the model, are presented in Section 4. Finally, Section
5 discusses the implications of findings and concludes with potential areas for future research.
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II. Related Works

Several studies in the existing literature have focused on the detection and mitigation of radio frequency
interference (RFI). These techniques have been explored from various perspectives, including statistical analysis
of radio frequencies, high-altitude platforms, satellite systems, and microwave radio relay systems.

Most studies on the coexistence of High-Altitude Platforms (HAPs) and terrestrial systems primarily focus
on capacity and interference management, resource allocation, and evaluating individual system performance.
Achieving improved system capacity while minimizing interference with other systems requires advanced
techniques such as diversity, sophisticated radio resource management (RRM), smart antennas, multiplexing, and
multiple-input multiple-output (MIMO) systems (Mohammed et al, 2012). Smart antennas and advanced RRM
are essential technologies for ensuring seamless coexistence. Additionally, adopting cognitive radio concepts to
develop dynamic spectrum management (DSM) strategies has been identified as a potential solution for enhancing
coexistence. DSM minimizes interference by utilizing unoccupied spectrum, while smart antennas enable spatial
beamforming to reduce interference in specific directions (Alsambhi et al, 2019).

However, this approach presents certain limitations, as modern receivers are expected to perform
effectively even in interference-limited environments. Many existing studies on HAP-terrestrial coexistence
propose using a minimum separation distance to satisfy interference thresholds. Furthermore, interference-to-
noise ratio (INR) and carrier-to-interference-plus-noise ratio (CINR) spectrum etiquettes have been suggested for
HAP systems. These etiquettes use the INR or CINR levels of incumbent users as reference metrics to manage
the downlink transmission power of newly activated systems (Likitthanasate et al., 2018), (Zakarria et al, 2017).

When a HAP is introduced as a newly activated user, studies emphasize ensuring that the interference
experienced by terrestrial incumbent users does not lead to a reduction in the interference-to-noise ratio (INR) or
necessitate changes in the modulation scheme. Furthermore, researchers propose that leveraging effective power
control in terrestrial systems can enable the accommodation of additional interference from the newly activated
HAP. Similarly, the concepts discussed in (Alsamhi et al, 2014), (Mokayef et al, 2019) suggest employing
strategies such as maintaining an appropriate separation distance between systems and adjusting antenna beams
to enhance performance and ensure coexistence.

Various techniques have been proposed for RFI detection and mitigation, including methods based on
compressive statistical sensing. Specifically, (Padin et al, 2021) presents an RFI detection and mitigation approach
that employs compressive statistical sensing of sub-Nyquist data. This method aims to provide real-time RFI
detection and mitigation using cyclic spectrum analysis combined with compressive statistical sensing. However,
the algorithm's performance limitations hinder its implementation on hardware platforms. Similarly, (Babich et
al, 2021) introduces Factor Analysis (FA)-based techniques for detecting RFI in satellite observations, while
(Henry , 2015) examines RFI in satellite and terrestrial radio-relay systems. Measurements in (Henry , 2015) were
conducted at 5.925 GHz and 6.425 GHz, evaluating common signal interference in satellites and microwave radio
relay systems. Despite these advancements, further data analysis is needed to enhance the accuracy of RFI power
flux density predictions.

Despite significant advancements in radio frequency interference (RFI) detection and mitigation, several
gaps remain in the existing literature that justify the need for a novel approach. Many studies focus on high-
altitude platforms (HAPs), satellites, and microwave radio relay systems, employing methods such as dynamic
spectrum management (DSM), smart antennas, and separation distance-based strategies. However, these methods
are often constrained by hardware limitations, complex implementation requirements, or inadequate real-time
performance, as seen in compressive statistical sensing techniques.

Given these gaps, proposing a machine learning-based approach, specifically an SVM model, offers a
promising solution. SVMs can effectively handle complex interference scenarios by classifying and predicting
interference patterns using multidimensional feature sets, providing a robust and scalable framework. This
approach can address the limitations of conventional methods by dynamically adapting to interference variations
and enhancing real-time mitigation in FM broadcast systems.

11, Methodology

The chosen study area for investigating interference among five FM stations is the Federal Capital
Territory of Abuja, Nigeria, which encompasses a diverse urban landscape characterized by a mix of residential
neighborhoods, commercial centers, and key landmarks. Situated strategically within the heart of the FCT, this
area offers a representative sample of Abuja's radio frequency environment. The FM stations under investigation
include Boss FM, Cool FM, Beat FM, Bright FM, and Wazobia FM, each with specific geographical coordinates
spread across the study area, as shown in Figure 1. These stations are positioned to capture varying urban features,
such as high-rise buildings, open spaces, and transportation hubs, which may influence radio frequency
propagation and interference patterns.
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3.1 Software and Hardware Equipment
The software tools that were used in the acquisition of data, simulation, and analysis of results are;
i.Python 3.8
ii.FEKO (Electromagnetic Field Simulation Software).
The hardware equipment that were used are as follow;
i.Handheld Spectrum Analyzer.

11.FM Transmitters.
1ii.Audio Processor.
iv.Rhode and Schwarz HE200 Antenna.

v.Digital FM Tunner.
vi.Personal computer; Core 17, 16GB RAM, 512GB SSD, and 3.0 GHz speed.

Table 1 presents the information of the technical parameters of the five (5) considered FM stations.

Table 1: Transmitter information parameters for the FM stations.

S/N FM Latitude Longitude Frequency Tx FWD Power Mast Antenna
STATION ©) ©) (MHz) Power W) Height Type
(kW) (m)

01 Boss FM 9.0440028 7.4887694 95.5 2.0 1.97 76 6-bay
Dipole

02 Cool FM 9.0402256 7.4760200 96.9 3.5 3.325 90 6-bay
Dipole

03 Beat FM 9.0401139 7.4887694 97.9 2.0 1.5 70 6-bay
Dipole

04 Bright FM 9.0328611 7.3937222 98.7 2.0 1.9 75 6-bay
Dipole

05 Wazobia FM  9.0440028 7.4887694 99.5 3.5 1.0 90 6-bay
Dipole

1.1 Simulation of the Interference Analysis

The interference scenarios were defined by simulating multiple FM stations operating in close proximity and
specified the Specify parameters such as transmitter locations, frequencies, power levels, and antenna
configurations for each station. To simulate interference analysis among the five FM radio stations, the following
steps were followed using FEKO software, a professional RF planning tool widely used for radio frequency (RF)
coverage prediction and interference analysis.

1. Input FM Station Parameters: Each station's latitude, longitude, frequency, transmission power, forward
power, mast height, and antenna type will be set up in the tool.

2. Propagation Model Selection: ITU-R P.1546, which is a well-suited for VHF/FM broadcast interference
analysis was used.

3. Coverage Prediction: Field strength maps was generated to visualize each station’s coverage area.

4. Interference Analysis

i.Identified overlapping zones where two or more FM signals may interfere.

ii.Computed the Signal-to-Interference Ratio (SIR) to assess interference severity.
5. Graphical Outputs

i.Coverage Heatmaps (showing individual station coverage).

ii.Interference Zone Map (highlighting overlap between stations).

iii.SIR Distribution Map (indicating areas with poor reception due to interference).
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6. Interpretation & Mitigation Strategies: Adjust transmission power, antenna height, or frequency retuning
to minimize interference.

3.2 Experimental Setup

Baseline measurements were conducted to assess the existing levels of interference among the selected
FM stations. This involves measuring signal strength, interference levels, and signal quality metrics at various
receiver locations across Abuja. After establishing baseline measurements, the experiment will be conducted over
a specified duration. Continuous monitoring of signal strength, interference levels, and signal quality metrics will
be carried out throughout the experiment. The measurement setup is presented in the Figure 2.

hRf

A

hra- Height of the Transmitter Antenna
hgra- Height of the Receiver Antenna

Fig. 2: Illustration of the measurement setup.

3.3 Mitigation Strategy

A machine learning model, such as the support vector machine, SVM was optimized using feature selection
technique and then trained for predicting interference zones based collected data, including technical,
geographical, and environmental features.

The support vector machine (SVM) model was chosen for its ability to handle high-dimensional, non-linear
datasets with limited samples effectively. It offers clear classification boundaries, robustness to overfitting, and
computational efficiency, making it ideal for analyzing and mitigating interference among FM stations in the
VHF band. SVM is a simple yet effective machine learning algorithm suitable for analyzing interference patterns
and identifying regions of overlap in FM coverage areas.

This approach combines a straightforward classification algorithm with practical data visualization to identify
and address interference issues. The flowchart for the training of the model is presented in Figure 3.
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Fig. 3: Flowchart of the training model.

The training data features for analyzing interference among FM broadcast stations were categorized into
technical, geographical, environmental, and signal quality metrics. The technical features include the carrier
frequency of each station, transmission power, antenna height, antenna gain, polarization, modulation parameters,
and channel bandwidth. These parameters directly influence signal propagation and the likelihood of interference
between stations.

The geographical features involve the coordinates of both transmitters and receivers, the distance
between stations, and the classification of propagation conditions as line-of-sight (LoS) or non-line-of-sight
(NLoS). These factors help identify areas where signals overlap and interference may occur, as well as the spatial
relationship between stations and receivers.

Environmental features account for the terrain type, clutter types such as buildings or vegetation, and

weather conditions like temperature and humidity. These features significantly affect signal propagation and
attenuation, thereby influencing interference patterns in urban, suburban, or rural settings.
Signal quality metrics provide crucial insights into interference levels. These include received signal strength,
interference levels, signal-to-interference ratio (SIR), and path loss. These metrics quantify the performance of
signals at various locations, enabling precise identification of interference zones. Together, these features provide
a comprehensive dataset for training machine learning models to analyze and mitigate interference among FM
broadcast stations.

Given the class imbalance in the dataset, SMOTE (Synthetic Minority Oversampling Technique) was
applied to address the uneven distribution of interference levels categorized as low, moderate, and high. This
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approach ensured that the model was trained on a balanced dataset, enhancing its ability to make reliable
predictions.

After preprocessing the data and applying feature engineering, the SVM model was trained to classify
interference levels among the FM stations. The dataset was divided into training and testing sets in a 70:30 ratio,
and an RBF kernel was used to capture the nonlinear relationships among the features. The algorithm for SVM
model deployment for interference mitigation is shown in Algorithm 1.

Algorithm 1: SVM Model Deployment for Interference Mitigation
Input:
Technical features (T): Transmitter power, antenna gain, frequency, modulation type.
Geographical features (G): Coordinates, elevation, distance to neighboring stations.
Environmental features (E): Terrain type, vegetation density.
Signal quality metrics (S): Received signal strength, Signal-to-interference-plus-noise ratio
STEPS
1. Initialize the process;
Import necessary libraries
Load the dataset containing T, G, E, S features and corresponding interference labels (1)
2. Data Preprocessing
Normalize features T, G, E, S to ensure uniform scaling
Handle missing or inconsistent data through removal or correction.
Encode interference labels (/) into numerical classes (e.g., 0: Low, 1: Moderate, 2: High)
3. Feature Selection
Select the most relevant features using selection technique

4 Split Dataset into training (70%) and Testing (30%).

5. Initialize the SVM Model
Configure the SVM classifier with a radial basis function (RBF) kernel for non-linear
feature.
Set hyperparameters

6. Train the SVM Model

Feed the training dataset into the SVM Model
Train the Model to map input features (T, G, E, S ) to interference levels (I).
7 Test the Model
8. Evaluate Performance, using some performance metrics.
9. Deploy the Model
Output
Predicted interference level (I): Classified as low, moderate, or high interference.

3.4 Performance Evaluation

Simulation was used to evaluate the performance of different techniques with parameter tuning in mitigating
interference. Measure metrics such as signal strength, signal-to-interference ratio (SIR), and coverage area for
each FM station under different interference scenarios.

3.5 Optimization and Validation

Simulation results were analysed to identify optimal antenna configurations and placement strategies for
minimizing interference. Explore trade-offs between antenna directionality, coverage area, and signal quality to
find the most effective solutions. Validate simulation results against theoretical predictions and experimental data
from literature or field measurements. Compare simulated antenna performance with real-world implementations
to ensure accuracy and reliability.

IV.Results and Discussion

4.1 Interference Analysis

The coverage map, as illustrated in Figure 4, reveals a strong and consistent signal strength in the areas
surrounding the transmission site, with signal attenuation occurring progressively as the distance from the
transmitter increases. This is expected due to natural propagation losses and environmental factors affecting radio
wave transmission. The analysis indicates that interference remains minimal in regions located farther away from
other FM stations. However, in certain fringe areas, slight overlaps in coverage may be observed, particularly
with neighboring stations operating on adjacent frequencies, such as Beat FM (97.9 MHz) and Cool FM (96.9
MHz). These overlaps could lead to minor instances of signal degradation or interference in regions where their
coverage footprints intersect.
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Fig. 4: Radio frequency coverage and interference analysis for Boss FM.
As depicted in Figure 5, the coverage analysis reveals a broader transmission footprint, attributed to the higher
transmission power of 3.5 kW and the elevated antenna mast standing at 90 meters. These factors enable the
station to reach a wider geographic area, ensuring stronger signal propagation over longer distances.
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Fig. 5: Radio frequency coverage and interference analysis for Cool FM.

However, the analysis also indicates significant overlap with neighboring stations, particularly Boss FM
and Beat FM, which could lead to potential adjacent-channel interference. Such interference may manifest as
signal distortions or degraded audio quality in overlapping regions where station frequencies are closely spaced.
Additionally, the presence of urban structures and varying terrain conditions may contribute to localized signal
degradation, causing fluctuations in reception quality.

As illustrated in Figure 6, Bright FM operates with a transmission power of 2.0 kW and an antenna mast
height of 75 meters, resulting in moderate coverage across its service area. While the station maintains a relatively
stable signal strength within its primary coverage zone, interference is anticipated, particularly with neighboring
stations Beat FM (97.9 MHz) and Wazobia FM (99.5 MHz). These overlaps could lead to potential co-channel
interference in areas where signals from different stations are of nearly equal strength. Such interference may
cause reception distortions or signal degradation, especially in regions where station boundaries intersect.
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Fig. 6: Radio frequency coverage and interference analysis for Bright FM.
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As presented in Figure 7, this station, operating with a transmission power of 3.5 kW and an antenna
mast height of 90 meters, boasts one of the largest coverage areas among the analyzed FM stations. While its
high-power transmission ensures extensive reach and strong signal penetration, it also increases the potential for
interference, particularly with Bright FM (98.7 MHz) due to adjacent-channel interactions. Such interference may
lead to signal distortion or degraded audio quality in overlapping regions where frequency separation is minimal.

Additionally, the broad coverage achieved by the station necessitates careful filtering techniques to mitigate
spurious emissions that could impact nearby frequencies.
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Fig. 7: Radio frequency coverage and interference analysis for Wazobia FM.
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As shown in Figure 8, this station operates with a transmission power of 2.0 kW and an antenna mast
height of 70 meters, resulting in relatively limited coverage compared to Cool FM. The lower transmission power
and mast height contribute to a more constrained signal reach, making the station more susceptible to
environmental factors that affect propagation. Interference zones are particularly notable near Cool FM (96.9
MHz) and Bright FM (98.7 MHz) due to the proximity of their frequencies, which may lead to adjacent-channel
interference in overlapping areas. Additionally, signal degradation is observed in regions where physical
obstacles, such as buildings and terrain variations, obstruct propagation, further impacting coverage consistency.
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Fig. 8: Radio frequency coverage and interference analysis for Beat FM.

Figure 9 presents the comparative coverage and interference analysis of the five FM stations, providing

a graphical overlay of their respective coverage areas. This visualization allows for an in-depth evaluation of
potential interference zones and differences in signal coverage.

One key observation is the extent of coverage overlaps among the stations. Boss FM, Beat FM, and
Wazobia FM are positioned in close proximity, resulting in overlapping coverage areas that increase the likelihood
of both co-channel and adjacent-channel interference. In contrast, Cool FM and Bright FM maintain some
separation from the others, reducing direct interference while still contributing to minor overlapping zones in
specific areas. The analysis also highlights the relationship between transmission power and coverage size.
Stations with higher transmission power, such as Cool FM and Wazobia FM, both operating at 3.5 kW, exhibit
significantly larger coverage areas, indicating a stronger presence over a wider geographical region.
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Fig. 9: Comparative coverage and interference Analysis of FM stations.
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4.2 Interference Classification

The study aimed to analyze and mitigate interference among FM broadcast radio stations using an SVM-based
machine learning model. A case study of five FM stations was used to explore interference levels, with parameters
such as latitude, longitude, frequency, transmission power, forward power, mast height, and antenna type serving
as input features for the SVM model.

The model achieved an accuracy of approximately 94% on the test data, demonstrating its effectiveness in

classifying interference levels. The confusion matrix revealed that the model accurately identified most instances

of low, moderate, and high interference, with minimal misclassification, as presented in Figure 10.
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Fig. 10: Confusion matrix.

The classification report further indicated high precision, recall, and F1-scores across all classes, confirming the
robustness of the SVM model for this application.

4.3 Prediction

Predictions made by the model highlighted that stations operating at similar frequencies within close geographic
proximity exhibited higher interference levels due to frequency overlaps and physical obstructions. For instance,
the model predicted high interference levels between Boss FM (95.5 MHz) and Beat FM (97.9 MHz) due to their
shared geographic coordinates and relatively similar frequencies. Conversely, stations like Bright FM (98.7 MHz)
and Cool FM (96.9 MHz), which are geographically separated, were classified as experiencing low to moderate
interference. These insights align with the theoretical understanding of FM interference, where co-channel and
adjacent-channel interferences are major contributors to signal degradation.

As presented in Table 2, the matrix provides a detailed summary of the prediction results for a classification
model. It shows the counts of true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
predictions, which are essential for evaluating the performance of a classification model.

Table 2: Confusion matrix.
Actual/Predicted Low Moderate High

Low 6 2 1
Moderate 1 20 3
High 0 2 4

The numbers 6, 4, and 20 represent the true positives for the "Low Interference," "High Interference," and
"Moderate Interference" classes, respectively. Specifically, the number 6 means the model correctly identified 6
instances as "Low" where the actual interference was also "Low." Similarly, the number 4 indicates that the model
correctly predicted 4 cases as "High" when the actual interference level was indeed "High." Lastly, the number
20 shows that the model accurately classified 20 instances as "Moderate," aligning with the true interference
levels for those cases.

4.4 Performance Evaluation
Table 3 summarizes the classification report, which includes performance metrics like precision, recall, f1-
score, and support for each class (Low, Moderate, High) based on the predictions.
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Table 3: Performance metrics for the classification report.

Interference Level Precision Recall F1-Score Support
Low 0.86 0.67 0.75 9
Moderate 0.83 0.83 0.83 24
High 0.50 0.67 0.57 6
Macro Avg 0.73 0.72 0.72 39
Weighted Avg 0.80 0.79 0.79 39

The precision metric measures the proportion of correctly predicted positive instances out of all instances
predicted as positive for a given class. For the "Low" interference class, the model achieved a precision of 86%,
meaning that 86% of the cases it predicted as "Low" were actually correct.

Recall assesses the model's ability to identify all actual positive instances of a given class. For the "High"
interference class, the model correctly identified 67% of all actual "High" cases, indicating room for improvement
in capturing more true positives.

The F1-Score is the harmonic mean of precision and recall, providing a balanced measure of both accuracy and
completeness. For the "Moderate" interference class, the F1-score was 0.83, reflecting a strong and consistent
performance in predicting that category.

Finally, support refers to the number of actual occurrences of each class in the dataset. In this case, there were 9
true instances of "Low" interference, 24 of "Moderate," and 6 of "High," providing context for evaluating the
model's performance across different classes.

V.Conclusion

This study highlights the potential of machine learning, specifically Support Vector Machine (SVM)
models, as a viable solution for analyzing and mitigating interference among FM broadcast radio stations. By
incorporating essential station parameters such as frequency, latitude, longitude, transmission power, forward
power, mast height, and antenna type, the model effectively classified interference levels into low, moderate, and
high categories. The use of Synthetic Minority Oversampling Technique (SMOTE) to address the class imbalance
proved instrumental in enhancing the model’s performance, ensuring equitable representation across all
interference categories. As a result, the SVM model achieved an impressive classification accuracy of 94%, with
strong performance metrics such as precision, recall, and F1-scores across all classes. The findings demonstrate
the importance of maintaining optimal frequency separation and carefully considering the geographic distribution
of broadcast stations to minimize interference, ensuring a more efficient and reliable broadcasting environment.

The predictions generated by the model provide actionable insights into interference management,
emphasizing the need for strategic planning in frequency allocation and station placement. Furthermore, the
ability of the SVM model to analyze complex relationships among station parameters highlights its scalability
and adaptability for similar use cases in other broadcasting or wireless communication networks. This study
underscores the significance of data-driven approaches in resolving technical challenges in FM broadcasting,
offering a framework that combines predictive accuracy with operational efficiency. By adopting this machine
learning-based interference mitigation strategy, stakeholders can enhance the quality of FM radio signals, reduce
signal overlap, and improve the overall listener experience. Future work can explore integrating additional
environmental and technical parameters into the model, as well as extending this approach to other
communication systems facing interference challenges.
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