Jordan Derivations and Jordan Triple Derivations on Banach Γ-algebras

A. K. Halder and Md. Abdullah-Al-Redoan

Amitabh Kumer Halder, Department of Mathematics University of Rajshahi Rajshahi-6205, Bangladesh Email: halderamitabh@yahoo.com

Md. Abdullah-Al-Redoan, Shenerhuda, Uthali, Jibannagar Chuadanga, Bangladesh Email:abdullahalredoan93@gmail.com

Abstract

Let M be a Banach Γ -algebra with a right identity e with conditions that e **a**M is commutative and semi-simple. We prove that the Jordan derivations and the product of any two Jordan derivations on M are derivations on M. We also prove that the Jordan triple left(right) derivations on a Banach Γ -algebra M having a right identity e are Jordan left(right) derivations on M. Furthermore, we prove that every Jordan right derivation on a Banach Γ algebra M with a right identity e is a zero derivation when it acts on the annihilator of M.

Mathematics Subject Classification: 16Y30, 16W25, 16U80.

Keywords: Banach Γ -algebras, right identity, Jordan derivations, derivations, Jordan triple left(right) derivations, Jordan left(right) derivations.

Date of Submission: 14-08-2024

Date of acceptance: 30-08-2024

I. Introduction

Definition 1.1: Let M and Γ be two linear spaces over a field F. M is said it be a Banach Γ -algebra over F if M is a Banach space and the following conditions are satisfied:

- (a) $m\alpha n\epsilon M$,
- (b) $(m\alpha n)\beta p = m\alpha (n\beta p),$
- (c) $c(m\alpha n) = (cm)\alpha n = m(c\alpha)n = m\alpha(cn),$
- (d) $m\alpha(n+p) = m\alpha n + m\alpha p$,
- (e) $m(\alpha+\beta)n = m\alpha n + m\beta n$,
- (f) $(m+n)\alpha p = m\alpha p + n\alpha p$,
- (g) $||m\alpha n|| \le ||m|| . ||\alpha|| . ||n||,$

for all m, n, $p \in M$, α , $\beta \in \Gamma$, and $c \in F$.

Example 1.2: Any Banach algebra can be regarded as a Banach Γ -algebra by suitably taking Γ .

Definition 1.3: Let M be Banach Γ -algebra, and d: M \rightarrow M be linear mapping.

- (a) d is said to be derivation if $d(m\alpha n) = d(m)\alpha n + m\alpha d(n)$, $\forall m, n \in M$, and $\alpha \in \Gamma$.
- (b) d is said to be Jordan derivation if $d(m\alpha m) = d(m)\alpha m + m\alpha d(m)$, $\forall m \in M$, and $\alpha \in \Gamma$.

(c) d is said to be Jordan left derivation if $d(m\alpha m) = 2m\alpha d(m)$, $\forall m \in M$, and $\alpha \in \Gamma$.

(d) d is said to be Jordan triple left derivation if $d((m\alpha)^3 \alpha m) = 3(m\alpha m)\alpha d(m)$, $\forall m \epsilon M$ and $\alpha \epsilon \Gamma$.

Jordan right derivations and Jordan triple right derivations can be defined similarly.

Definition 1.4: We denote the right annihilator of a Banach Γ -algebra M by ran(M) and is defined by ran(M) = $\{x \in M : M\alpha x = \{0\} \text{ for all } \alpha \in \Gamma\}.$

Definition 1.5: We denote the radical of a Banach Γ -algebra M by rad(M) and is defined by the intersection of maximal left ideals of M.

Definition 1.6: Let M be a Banach Γ -algebra. The linear mapping T: M \rightarrow M is said to be spectrally bounded if there exists a non-negative number t such that $r(T(m)) \leq t\alpha r(m)$, $\forall m \in M$, and $\alpha \in \Gamma$, where r(.) denotes the spectral radius.

Definition 1.7: Let M be a Banach Γ -algebra and Z(M) be the center of M. Then for an integer k, a linear mapping T: M \rightarrow M is said to be k-centralizing if T(m) $\alpha((m\alpha)^k \alpha m) - ((m\alpha)^k \alpha m)\alpha$ T(m) ϵ Z(M), $\forall m\epsilon$ M, and $\alpha\epsilon\Gamma$.

Y. Ceven [15] investigated the Jordan left derivations on completely prime Γ -rings. He showed that if a Jordan left derivation on a completely prime Γ -ring is non-zero with an assumption, then the Γ -ring is commutative. He also proved that every Jordan left derivation together with an assumption on a completely prime Γ -ring is a left derivation on it. In this paper, he gave an example of Jordan left derivations on Γ -rings.

Mustafa Asci and Sahin Ceran [9] studied on a nonzero left derivation d on a prime Γ -ring M with an ideal U and the center Z of M such that $d(U) \subseteq U$ and $d^2(U) \subseteq Z$ for which M is commutative. They also investigated that M is commutative with the nonzero left derivation d_1 and right derivation d_2 on M such that $d_1(U) \subseteq U$ and $d_1d_2(U) \subseteq Z$.

A.C. Paul and Amitabh Kumer Halder [1] studied on the existence of a non-zero Jordan left derivation from a Γ -ring M into a 2-torsionfree and 3-torsionfree left ΓM -module X that makes M commutative. They also showed that if X = M is a semiprime Γ -ring then the derivation is a mapping from M into its centre and if M is a prime Γ -ring then every Jordan left derivation d on M is a left derivation on M.

Nilakshi Goswami [12] worked on the characterizations of Jacobson radicals of Γ -Banach Algebras in different perspectives.

Nadia M. J. Ibrahem [13] studied on the full stable Banach gamma-algebra modules with the introduction of fully stable Banach gamma-algebra modules relative to ideal and some properties and characterizations of the classes of full stability.

M. J. Mehdipour, GH. R. Moghimi and N. Salkhordeh [8] studied on the types of Jordan derivations of a Banach algebra A with a right identity e. They proved that if eA is commutative and semi-simple, then every Jordan derivation of A is a derivation. They investigated that every Jordan triple left (right) derivation of A is a Jordan left (right) derivation. Furthermore, they investigated the range of Jordan left derivations and proved that every Jordan left derivations of A maps A into eA.

In this study, we generalize the results of M. J. Mehdipour, GH. R. Moghimi and N. Salkhordeh [8] in Γ version. We investigate that the Jordan derivations and the product of any two Jordan derivations on a Banach Γ -algebra M having a right identity e with conditions that $e\alpha M$ is commutative and semi-simple are derivations on M. We also show that every Jordan triple left(right) derivation on a Banach Γ -algebra M with a right identity e is a Jordan left(right) derivations on M. Finally, we prove that every Jordan right derivation on a Banach Γ -algebra M with a right identity e is a zero on ran(M).

II. Jordan Derivations on Banach Γ-algebras

Lemma 2.1: Let M be a Banach Γ -algebra with a right identity e such that d: M \rightarrow M be a Jordan derivation. Then, (a) ran(M) is invariant under d. (b) If d: $M \rightarrow ran(M)$ is a mapping, then d is a derivation. **Proof:** (a) Since d: $M \rightarrow M$ is a Jordan derivation, we get $d(m\alpha n + n\alpha m) = d(m)\alpha n + m\alpha d(n) + d(n)\alpha m + n\alpha d(m), \forall m, n \in M, and \alpha \in \Gamma$ (1)Writing m = n = e in eq. (1), we get $2d(e) = d(e\alpha e + e\alpha e)$ $= d(e)\alpha e + e\alpha d(e) + d(e)\alpha e + e\alpha d(e)$ $= 2d(e) + 2e\alpha d(e).$ This yields $e\alpha d(e) = 0$, and so $d(e)\epsilon ran(M)$. Replacing m by e in (1) to get $d(e\alpha n) + d(n) = d(e\alpha n + n\alpha e)$ $= d(e)\alpha n + e\alpha d(n) + d(n)\alpha e + n\alpha d(e)$ $= d(e)\alpha n + e\alpha d(n) + d(n), \forall n \in M, and \alpha \in \Gamma.$ Thus, $d(e\alpha n) = d(e)\alpha n + e\alpha d(n)$, (2) \forall n ϵ M. and $\alpha \epsilon \Gamma$. Using (2), we have $m\alpha d(p) = m\alpha e\alpha d(p)$ $= \mathbf{m}\boldsymbol{\alpha} (\mathbf{d}(\mathbf{e})\boldsymbol{\alpha}\mathbf{p} + \mathbf{e}\boldsymbol{\alpha}\mathbf{d}(\mathbf{p}))$ $= m\alpha d(e\alpha p)$ = 0, \forall m ϵ M, p ϵ ran(M), and $\alpha \epsilon \Gamma$, and so d(p) ϵ ran(M). (b) Suppose d: $M \rightarrow ran(M)$ is a mapping. We apply equations (1) and (2) to get $d(e\alpha m) = d(e) \alpha m$ and $d(p\alpha m) = d(p)\alpha m$, $\forall m \in M$, $p \in ran(M)$, and $\alpha \in \Gamma$. For every m ϵ M, there exists p ϵ ran(M) such that m = e α m+ p, $\forall \alpha \epsilon \Gamma$, and so we have $d(m\alpha n) = d(e\alpha m\alpha n + p\alpha n)$ $= d(e\alpha m\alpha n) + d(p\alpha n)$ $= d(e\alpha m) \alpha n + d(p) \alpha n$

 $= d(e\alpha m + p)\alpha n$

= d(m) α n, \forall n ϵ M, and $\alpha \epsilon \Gamma$.

Now, $m\alpha d(n) = 0$ yields that $d(a\alpha x) = d(m)\alpha n + m\alpha d(n)$ showing d is a derivation on M.

Theorem 2.2: If M is a Banach Γ -algebra with a right identity e such that $e\alpha M$ is commutative and semi-simple and d: $M \rightarrow M$ is a Jordan derivation, then d is a derivation. Moreover, d is spectrally infinitesimal and $d(M)\subseteq ran(M)$.

Proof: Suppose d: $M \rightarrow M$ is a Jordan derivation. Due to Lemma 2.1 (b), d: $M \rightarrow M$ is a mapping. We define the Jordan derivation D: $M/ran(M) \rightarrow M/ran(M)$ by

D(m + ran(M)) = d(m) + ran(M), which is well-defined. It is notable that M/ran(M) and e α M are Banach Γ -algebras, and so they are isomorphic. Thus, using the Γ -version in Corollary 1.5.3 (ii) of [6] it can be inferred that M/ran(M) is commutative semi-simple Banach Γ -algebra since e α M is commutative, semi-simple, and isomorphic to M/ran(M). Then D is a derivation, and D is zero on M/ran(M) [by observing the Γ -versions in necessary parts in [7], [10], [11]]. This gives that d(m) ϵ ran(M), and so by Lemma 2.1(b), d is a derivation. We note that d(M) is nilpotent, and so d is spectrally infinitesimal.

Corollary 2.3: Let M be Banach Γ -algebra M with a right identity e such that $e\alpha M$ be commutative and semisimple. If d, d_1 , d_2 are Jordan derivations on M, then the following conditions are satisfied:

(a) The range of a Jordan derivation d of M is contained in rad(M).

(b) $d_1 d_2$ is a derivation.

(c) For any positive integer k, the zero map is the only k-centralizing Jordan derivation of M.

Proof: (a) The proof directly follows from Theorem 2.2.

(b) Since d_1 and d_2 are Jordan derivations on M, by Theorem 2.2, d_1 and d_2 are derivations on M, and $d_1(M) \subseteq \operatorname{ran}(M)$ and $d_2(M) \subseteq \operatorname{ran}(M)$. Then for any $\forall m, n \in M$, and $\alpha \in \Gamma$, we have $d_1(m)\alpha d_2(n) + d_1(n)\alpha d_2(m) = 0$. This shows that d_1d_2 is a derivation on M.

(c) Suppose d: $M \rightarrow M$ is a k-centralizing for some positive integer k. Then by Theorem 2.2, we have $d(m)\alpha((m\alpha)^k\alpha m) = d(m)\alpha((m\alpha)^k\alpha m) - ((m\alpha)^k\alpha m)\alpha d(m)\epsilon ran(M) \cap Z(M)$. Then $d(m)\alpha((m\alpha)^k\alpha m) = \{0\}$, and so d(e) = 0. For any $m\epsilon M$ and $\alpha\epsilon\Gamma$, let $p = m - e\alpha m$. Then

 $p + e = ((p + e)\alpha)^k \alpha(p + e)$, and so d(p) = 0. This gives $d(m) = d(p + e\alpha m) = d(e\alpha m) = d(e)\alpha m = 0$. Therefore, d = 0.

Theorem 2.4: If M is Banach Γ -algebra together with M/ran(M) is commutative and semi-simple, then the following statements are satisfied:

(a) If d: $M \to M$ is a derivation, then d: $M \to ran(M) \subseteq rad(M)$.

(b) Every derivation d: $M \rightarrow M$ is spectrally infinitesimal.

(c) If d_1 and d_2 are derivations on M, then d_1d_2 is a derivation of M.

Proof: (a) Since d is a derivation on M, d is a Jordan derivation on M, and so d(M) is invariant under d by Lemma 2.1 (a).

(b) Applying derivations instead of Jordan derivations to the proof of Theorem 2.2, we get the required result. (c) $d_1d_2: M \rightarrow M$ is a derivation due to (a).

III. Jordan triple derivations on Banach Γ-algebras

Theorem 3.1 : If M is a Banach Γ -algebra with a right identity e such that d: $M \to M$ is a	
Jordan left derivation, then d: $M \rightarrow e \alpha M$ is a mapping.	
Proof : Since d: $M \rightarrow M$ is a Jordan left derivation,	
$\mathbf{d}(\mathbf{e}) = 2\mathbf{e}\boldsymbol{\alpha}\mathbf{d}(\mathbf{e}),$	(3)
and so $m\alpha d(e) = 2m\alpha d(e)$, $\forall m \in M$, and $\alpha \in \Gamma$.	
This gives $d(e)\epsilon ran(M)$, and by eq. (3), $d(e) = 0$.	
We fix $p \in ran(M)$ to get	
d(p) = d(p) + d(e)	
$= d((p + e)\alpha(p + e))$	
$=2(p+e)\alpha d(p+e)$	
$= 2p\alpha d(p) + 2e\alpha d(p)$, for any $\alpha \epsilon \Gamma$,	
Thus, $m\alpha d(p) = 2m\alpha d(p)$, $\forall m \epsilon M$, and $\alpha \epsilon \Gamma$, and so $d(p)\epsilon ran(M)$, $\forall p \epsilon ran(M)$.	
Since d: $M \rightarrow M$ is a Jordan left derivation,	
$d(m\boldsymbol{\alpha}m) = 2m\boldsymbol{\alpha}d(m),$	(4)
\forall m ϵ M, and $\alpha \epsilon \Gamma$.	
Replacing m by $m + e$ in eq. (4), we get Let us replace a by $a + e$ in (4). Then	
$d(m + e\boldsymbol{\alpha}m) = 2m\boldsymbol{\alpha}d(e) + 2e\boldsymbol{\alpha}d(m) = 2e\boldsymbol{\alpha}d(m).$	
This implies that	
$\mathbf{d}(\mathbf{m}) = 2\mathbf{e}\boldsymbol{\alpha}\mathbf{d}(\mathbf{m}) - \mathbf{d}(\mathbf{e}\boldsymbol{\alpha}\mathbf{m}),$	(5)

 \forall m ϵ M. and $\alpha \epsilon \Gamma$. Applying the fact that $m - e\alpha m\epsilon ran(M)$, we assume that $e\alpha d(m - e\alpha m) = 0$, (6) \forall m ϵ M, and $\alpha \epsilon \Gamma$. By eq. (5) and eq. (6), we get $d(m - e\alpha m) = 2e\alpha d(m - e\alpha m) - d(e\alpha (m - e\alpha m)) = 0, \forall m \in M, and \alpha \in \Gamma.$ This yields $d(m) = d(e\alpha m)$, $\forall m \in M$, and $\alpha \in \Gamma$. Applying the above relation and eq. (5), we obtain $d(m) = d(e\alpha m)$, which together with (5) shows that d(m) = $e\alpha d(m)$, (7) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Therefore, d: M \rightarrow e α M is a mapping. **Corollary 3.2**: If M is a Banach Γ -algebra with a right identity e such that d: M \rightarrow M is a Jordan left derivation and d: $M \rightarrow ran(M)$ is a mapping, then d is a zero mapping. **Proof**: Since d: $M \rightarrow ran(M)$ is a mapping, $d(M) \subseteq ran(M)$. By Theorem 3.1, we have $d(M)\subseteq ran(A)\cap e\alpha M = \{0\}$, for any $\alpha \in \Gamma$. Therefore, d is a zero mapping. **Theorem 3.3:** If M is a Banach Γ -algebra with a right identity e such that d: M \rightarrow M is a Jordan triple left derivation, then d is a Jordan left derivation. **Proof:** Since d: $M \rightarrow M$ is a Jordan triple left derivation, we have $d((m\alpha)^3\alpha m) = 3m\alpha m\alpha d(m),$ (8) \forall m ϵ M. and $\alpha \epsilon \Gamma$. Writing m + e for m in eq. (8), we get $2d(m\alpha m) + d(m) + 2d(e\alpha m) + d(e\alpha m2) = 3e\alpha d(m) + 3m\alpha d(m) + 3e\alpha m\alpha d(m),$ (9) \forall m ϵ M. and $\alpha \epsilon \Gamma$. We have that d(e) = 0. Replacing m by -m in eq. (9), we get $2d(m\alpha m) - d(m) - 2d(e\alpha m) + d(e\alpha m2) = 3e\alpha d(m) + 3m\alpha d(m) + 3e\alpha m\alpha d(m),$ (10) \forall m ϵ M, and $\alpha \epsilon \Gamma$. We apply eq. (9) and eq. (10) to $d(m) + 2d(e\alpha m) = 3e\alpha d(m),$ (11) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Putting m – $e\alpha$ m for m in eq. (11), we get $d(m) = d(e\alpha m)$, (12) \forall m ϵ M. and $\alpha \epsilon \Gamma$. Applying eq. (11) and eq. (12), we get $d(m) = e\alpha d(m),$ (13) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Replacing m by e in eq. (8) to get $e\alpha d(e) = d(e) = 0$, for any $\alpha \epsilon \Gamma$. Then, $d((m\alpha)^{3}\alpha m + 2m\alpha m + m + e\alpha m\alpha m + 2e\alpha m + (e\alpha)^{3}\alpha e) = 3m\alpha m\alpha d(m) + 3m\alpha m\alpha d(e) + 3e\alpha d(m) + 3e\alpha e\alpha d(e)$ + $3m\alpha e\alpha d(m)$ + $3m\alpha d(e)$ + $3e\alpha m\alpha d(m)$ + $3e\alpha m\alpha d(e)$, $\forall m\epsilon M$, and $\alpha \epsilon \Gamma$. Since d:M \rightarrow M is a Jordan triple left derivation, d($(m\alpha)^3 \alpha m$) = $3m\alpha m\alpha d(m)$, $\forall m \epsilon M$, and $\alpha \epsilon \Gamma$, and so we have $2d(m\alpha m) + d(m) + d(e\alpha m\alpha m) + 2d(e\alpha m) = 3e\alpha d(m) + 3m\alpha d(m) + 3e\alpha m\alpha d(m), \forall m \in M, and \alpha \in \Gamma.$ Appling eq. (12) and eq. (13) in the above relation, we have $3d(m\alpha m) + 3d(m) = 3d(m) + 3m\alpha d(m) + 3e\alpha m\alpha d(m), \forall m \in M, and \alpha \in \Gamma, and so$ $d(m\alpha m) = m\alpha d(m) + e\alpha m\alpha d(m),$ (14) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Using eq. (13) and eq. (14), we have $d(m\alpha m) = e\alpha d(m\alpha m) = 2e\alpha m\alpha d(m),$ (15) \forall m ϵ M, and $\alpha \epsilon \Gamma$. This gives $2m\alpha m\alpha d(m) = m\alpha (2e\alpha m\alpha d(m)) = m\alpha d(m\alpha m)$, and so we have $2m\alpha m\alpha d(m) = m\alpha d(m\alpha m), \forall m \in M, and \alpha \in \Gamma.$ As a consequence, we have $2d((m\alpha)^3\alpha m) = 6m\alpha m\alpha d(m) = 3(2m\alpha m\alpha d(m)) = 3m\alpha d(m\alpha m).$ Thus, $2d(((m+e)\alpha)^{3}\alpha(m+e)) = 3(m+e)\alpha d((m+e)\alpha(m+e))$ $= 3m\alpha d((m + e) \alpha(m + e)) + 3e\alpha d((m + e) \alpha(m + e))$ $= 3m\alpha d((m+e) \alpha(m+e)) + 3d((m+e) \alpha(m+e)),$ which yields $2d((m\alpha)^{3}\alpha m + 2m\alpha m + 2e\alpha m + e\alpha m\alpha m + m) = 3m\alpha d(m\alpha m + 2m) + 3d(m\alpha m + 2m)$ This shows that

 $3d(m\alpha m) = 6m\alpha d(m)$, and so $d(m\alpha m) = 2m\alpha d(m)$, $\forall m \in M$, and $\alpha \in \Gamma$. Therefore, d is a Jordan left derivation on M. **Theorem 3.4:** If M is a Banach Γ -algebra with a right identity e such that d: M \rightarrow M is a linear mapping and d is a Jordan triple right derivation, then d is a Jordan right derivation. **Proof:** Since d: $M \rightarrow M$ is a Jordan triple right derivation, d(e) = 0 and so we have $d(((m+e)\alpha)^3\alpha(m+e)) = 3d(m+e)\alpha((m+e)\alpha(m+e)), \forall m \in M, and \alpha \in \Gamma.$ Thus, we have $2d(m\alpha m) + 2d(e\alpha m) + d(e\alpha m\alpha m) = 6d(m)\alpha m + 2d(m),$ (16) \forall m ϵ M. and $\alpha \epsilon \Gamma$. We write -m for m in eq. (16) to get $2d(m\alpha m) - 2d(e\alpha m) + d(e\alpha m\alpha m) = 6d(m)\alpha m - 2d(m)$ (17) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Using eq. (16) and eq. (17), we have $d(m) = d(e\alpha m)$ and $2d(m\alpha m) + d(e\alpha m\alpha m) = 6d(m)\alpha m$. From above, we have $3d(m\alpha m) = 6d(m)\alpha m$, which yields $d(m\alpha m) = 2d(m)\alpha m$, $\forall m \in M$, and $\alpha \in \Gamma$. Therefore, d is a Jordan right derivation on M. **Theorem 3.5:** If M is a Banach Γ -algebra with a right identity e such that d: M \rightarrow M is a Jordan

right derivation, then d: $ran(M) \rightarrow ran(M)$ is a zero derivation.

Proof: Since d: $M \rightarrow M$ is a right derivation and M is a Banach Γ -algebra with a right identity e, we get d(e) = 0. Again, if we fix $p\epsilon ran(M)$, we get $(p + e)\mathbf{\alpha}(p + e) = p + e$, $\forall \mathbf{\alpha} \epsilon \Gamma$

This gives $d(p) = d((p + e)\alpha(p + e)) = 2d(p + e) \alpha(p + e) = 2d(p)$. Therefore, d(p) = 0, $\forall p \epsilon ran(M)$. Therefore, d: ran(M) \rightarrow ran(M) is a zero derivation.

IV. Discussion

We studied derivations such as Jordan left derivations, Jordan triple left(right) derivations on Banach Γ algebras M whereas Nilakshi Goswami [12] worked on the characterizations of Jacobson radicals of Γ -Banach Algebras in different perspectives. Also, Y. Ceven [15] showed that every Jordan left derivation together with an assumption on a completely prime Γ -ring is a left derivation on it whereas we proved that Jordan derivations and the product of any two Jordan derivations on a Banach Γ -algebra M with certain conditions are derivations as well as Jordan triple left(right) derivations on a Banach Γ -algebra M with a right identity e are Jordan left(right) derivations on M

V. Conclusion

The Jordan derivations and the product of any two Jordan derivations on a Banach Γ -algebra M are derivations based on the right identity e and the conditions that e α M is commutative and semi-simple. The Jordan triple left(right) derivations on a Banach Γ -algebra M having a right identity e are Jordan left(right) derivations on M. Finally, Jordan right derivation on a Banach Γ -algebra M with a right identity e is a zero derivation on the annihilator of M.

Acknowledgment

The author would like to thank the anonymous referees for their valuable suggestions and comments.

References

- Paul, A. C. and Halder, A. K. (2009), "Jordan Left Derivations of Two Torsion Free FM –Modules", J. of Physical Sci. (ISSN: 0972-8791), vol. 13, pp. 13-19.
- [2]. Paul, A. C. and Halder, A. K. (2010), "On Left Derivatives of Γ-rings", Bull. Pure Appl. Math., vol. 4, no. 2, pp. 320-328.
- [3]. Halder, A. K. (2021), "Commutativity of Prime Near Γ-rings with Nonzero Reverse σ-derivations and Derivations", IJRES (ISSN: 2320-9364(O),2320-9356(P)), vol. 9, no. 12, pp. 1-11.
- [4]. Halder, A. K. (2022), "Commutativity of Prime Γ-MA-semirings with None-zero Jordan Left Derivations and Left Derivations on Closed Lie Ideals", IJRES (ISSN: 2320-9364(O),2320-9356(P)), Vol. 10, no. 12, pp. 439 – 444.
- [5]. Dey, K. K. and Paul, A. C. (2012), "On Derivations in Prime Gamma Near-Rings", GANITJ. Bangladesh Math. Soc. (ISSN: 1606-3694), vol. 32, pp. 23-28.
- [6]. Dales, H. G. (2000), "Banach Algebras and Automatic Continuity", Clarendon Press, Oxford.
- [7]. Singer, I. M.; Wermer, J. (1955), "Derivations on commutative normed algebras", Math.Ann. 129, pp. 260–264.
- [8]. Mehdipour, M. J., Moghimi, GH. R., and Salkhordeh, N., "Jordan derivations on certain Banach algebras", eprint arXiv:2306.12529.
- [10]. Bresar, M. (1988), "Jordan derivations on semiprime rings", Proc. Amer. Math. Soc. Vol.104, no. 4, pp. 1003–1006.
- [11]. Thomas, M. (1988), "The image of a derivation is contained in the radical", Ann. of Math. (2) 128, no. 3, pp. 435–460.
- [12]. Goswami, N. (2012), "A Characterization of Jacobson Radical in Γ-Banach Algebras", Advances in Pure Mathematics, Vol. 2, pp. 413-418.

M. J. Ibrahem, N. (2021), "Banach gamma-algebra modules and full stability", Italian J. of Pure and Ap. Mathematics, N. 46, pp.164– [13]. 170.

Barnes, W.E. (1966), "On the Γ-rings of Nobusawa", Pacific J. Math., vol. 18, pp.411-422. Ceven, Y. (2002), "Jordan left derivations on completely prime gamma rings", C.U. Fen- Edebiyat Fakultesi, Fen Bilimleri Dergisi, Cilt 23 Sayi 2. [14]. [15].