Jordan Derivations and Jordan Triple Derivations on Banach Γ-algebras

A. K. Halder and Md. Abdullah-Al-Redoan

Amitabh Kumer Halder, Department of Mathematics University of Rajshahi Rajshahi-6205, Bangladesh Email: halderamitabh@yahoo.com

Md. Abdullah-Al-Redoan, Shenerhuda, Uthali, Jibannagar Chuadanga, Bangladesh Email:abdullahalredoan93@gmail.com

Abstract

Let M be a Banach Γ-algebra with a right identity e with conditions that eM is commutative and semi-simple. We prove that the Jordan derivations and the product of any two Jordan derivations on M are derivations on M. We also prove that the Jordan triple left(right) derivations on a Banach Γ-algebra M having a right identity e are Jordan left(right) derivations on M. Furthermore, we prove that every Jordan right derivation on a Banach Γalgebra M with a right identity e is a zero derivation when it acts on the annihilator of M.

Mathematics Subject Classification: 16Y30, 16W25, 16U80.

Keywords: Banach Γ-algebras, right identity, Jordan derivations, derivations, Jordan triple left(right) derivations, Jordan left(right) derivations.

--- Date of Submission: 14-08-2024 Date of acceptance: 30-08-2024 ---

I. Introduction

Definition 1.1: Let M and Γ be two linear spaces over a field F. M is said it be a Banach Γ-algebra over F if M is a Banach space and the following conditions are satisfied:

- (a) $m\alpha n \in M$,
- (b) $(m\alpha n)\beta p = m\alpha(n\beta p),$
- (c) c(m α n) = (cm) α n = m(c α)n = m α (cn),
- (d) $m\alpha(n + p) = m\alpha n + m\alpha p$,
- (e) $m(\alpha+\beta)n = m\alpha n + m\beta n$,
- (f) $(m+n)\alpha p = m\alpha p + n\alpha p$,
- (g) $||\text{m}\alpha \text{n}|| \leq ||\text{m}||.||\alpha||.||\text{n}||,$

for all m, n, p ϵM , α , $\beta \epsilon \Gamma$, and c ϵF .

Example 1.2: Any Banach algebra can be regarded as a Banach Γ-algebra by suitably taking Γ.

Definition 1.3: Let M be Banach Γ-algebra, and d: $M \rightarrow M$ be linear mapping.

(a) d is said to be derivation if $d(m\alpha n) = d(m)\alpha n + m\alpha d(n)$, $\forall m, n \in M$, and $\alpha \in \Gamma$.

(b) d is said to be Jordan derivation if $d(m\alpha m) = d(m)\alpha m + m\alpha d(m)$, \forall meM, and $\alpha \in \Gamma$.

(c) d is said to be Jordan left derivation if $d(m\alpha m) = 2m\alpha d(m)$, $\forall m \in M$, and $\alpha \in \Gamma$.

(d) d is said to be Jordan triple left derivation if $d((m\alpha)^3 \alpha m) = 3(m\alpha m)\alpha d(m)$, \forall meM and $\alpha \in \Gamma$.

Jordan right derivations and Jordan triple right derivations can be defined similarly.

Definition 1.4: We denote the right annihilator of a Banach Γ-algebra M by ran(M) and is defined by ran(M) = { $x \in M$: $M\alpha x = \{0\}$ for all $\alpha \in \Gamma$ }.

Definition 1.5: We denote the radical of a Banach Γ-algebra M by rad(M) and is defined by the intersection of maximal left ideals of M.

Definition 1.6: Let M be a Banach Γ-algebra. The linear mapping T: $M \rightarrow M$ is said to be spectrally bounded if there exists a non-negative number t such that $r(T(m)) \leq t\alpha r(m)$, \forall meM, and $\alpha \in \Gamma$, where r(.) denotes the spectral radius.

Definition 1.7: Let M be a Banach Γ-algebra and Z(M) be the center of M. Then for an integer k, a linear mapping T: M \rightarrow M is said to be k-centralizing if T(m) $\alpha((m\alpha)^k \alpha m)$ - $((m\alpha)^k \alpha m)\alpha T(m)\epsilon Z(M)$, \forall m ϵ M, and $α ∈ Γ$.

Y. Ceven [15] investigated the Jordan left derivations on completely prime *Γ*-rings. He showed that if a Jordan left derivation on a completely prime Γ -ring is non-zero with an assumption, then the Γ -ring is commutative. He also proved that every Jordan left derivation together with an assumption on a completely prime Γ -ring is a left derivation on it. In this paper, he gave an example of Jordan left derivations on Γ -rings.

Mustafa Asci and Sahin Ceran [9] studied on a nonzero left derivation d on a prime Γ -ring M with an ideal U and the center Z of M such that $d(U) \subseteq U$ and $d^2(U) \subseteq Z$ for which M is commutative. They also investigated that M is commutative with the nonzero left derivation d_1 and right derivation d_2 on M such that $d_1(U) \subseteq U$ and $d_1 d_2(U) \subseteq Z$.

A.C. Paul and Amitabh Kumer Halder [1] studied on the existence of a non-zero Jordan left derivation from a Γ ring M into a 2-torsionfree and 3-torsionfree left TM -module X that makes M commutative. They also showed that if $X = M$ is a semiprime Γ -ring then the derivation is a mapping from M into its centre and if M is a prime Γ -ring then every Jordan left derivation d on M is a left derivation on M .

Nilakshi Goswami [12] worked on the characterizations of Jacobson radicals of Γ-Banach Algebras in different perspectives.

Nadia M. J. Ibrahem [13] studied on the full stable Banach gamma-algebra modules with the introduction of fully stable Banach gamma-algebra modules relative to ideal and some properties and characterizations of the classes of full stability.

M. J. Mehdipour, GH. R. Moghimi and N. Salkhordeh [8] studied on the types of Jordan derivations of a Banach algebra A with a right identity e. They proved that if eA is commutative and semi-simple, then every Jordan derivation of A is a derivation. They investigated that every Jordan triple left (right) derivation of A is a Jordan left (right) derivation. Furthermore, they investigated the range of Jordan left derivations and proved that every Jordan left derivation of A maps A into eA.

In this study, we generalize the results of M. J. Mehdipour, GH. R. Moghimi and N. Salkhordeh [8] in Γ version. We investigate that the Jordan derivations and the product of any two Jordan derivations on a Banach Γ-algebra M having a right identity e with conditions that $e\alpha M$ is commutative and semi-simple are derivations on M. We also show that every Jordan triple left(right) derivation on a Banach Γ-algebra M with a right identity e is a Jordan left(right) derivations on M. Finally, we prove that every Jordan right derivation on a Banach Γ-algebra M with a right identity e is a zero on ran(M).

II. Jordan Derivations on Banach Γ-algebras

Lemma 2.1: Let M be a Banach Γ-algebra with a right identity e such that d: $M \rightarrow M$ be a Jordan derivation. Then, (a) ran(M) is invariant under d. (b) If d: $M \rightarrow ran(M)$ is a mapping, then d is a derivation. **Proof:** (a) Since d: $M \rightarrow M$ is a Jordan derivation, we get $d(m\alpha n + n\alpha m) = d(m)\alpha n + m\alpha d(n) + d(n)\alpha m + n\alpha d(m), \forall m, n \in M, \text{ and } \alpha \in \Gamma$ (1) Writing $m = n = e$ in eq. (1), we get $2d(e) = d(e\alpha e + e\alpha e)$ $= d(e)\alpha e + e\alpha d(e) + d(e)\alpha e + e\alpha d(e)$ $= 2d(e) + 2e\alpha d(e).$ This yields $e\alpha d(e) = 0$, and so $d(e) \epsilon \text{ran}(M)$. Replacing m by e in (1) to get $d(e\alpha n) + d(n) = d(e\alpha n + n\alpha e)$ $= d(e)\alpha n + e\alpha d(n) + d(n)\alpha e + n\alpha d(e)$ $= d(e)\alpha n + e\alpha d(n) + d(n), \forall$ n \in M, and $\alpha \in \Gamma$. Thus, $d(e\alpha n) = d(e)\alpha n + e\alpha d(n)$, (2) \forall n \in M, and $\alpha \in \Gamma$. Using (2), we have $\text{m}\alpha d(p) = \text{m}\alpha e \alpha d(p)$ $=$ m α (d(e) α p + e α d(p)) $=$ m α d(e α p) = 0, \forall m \in M, p \in ran(M), and $\alpha \in \Gamma$, and so d(p) \in ran(M). (b) Suppose d: $M \rightarrow ran(M)$ is a mapping. We apply equations (1) and (2) to get $d(e\alpha m) = d(e) \alpha m$ and $d(p\alpha m) = d(p)\alpha m$, \forall m \in M, p ϵ ran(M), and $\alpha \epsilon \Gamma$. For every meM, there exists peran(M) such that $m = e\alpha m + p$, $\forall \alpha \in \Gamma$, and so we have $d(m\alpha n) = d(e\alpha m\alpha n + p\alpha n)$ $= d(e\alpha m\alpha n) + d(p\alpha n)$ $= d(e\alpha m) \alpha n + d(p) \alpha n$

 $= d(e\alpha m + p)\alpha n$

 $= d(m)\alpha n$, \forall n \in M, and $\alpha \in \Gamma$.

Now, $m\alpha d(n) = 0$ yields that $d(a\alpha x) = d(m)\alpha n + m\alpha d(n)$ showing d is a derivation on M.

Theorem 2.2: If M is a Banach Γ-algebra with a right identity e such that $e\alpha M$ is commutative and semi-simple and d: $M \rightarrow M$ is a Jordan derivation, then d is a derivation. Moreover, d is spectrally infinitesimal and $d(M) \subseteq ran(M)$.

Proof: Suppose d: $M \rightarrow M$ is a Jordan derivation. Due to Lemma 2.1 (b), d: $M \rightarrow M$ is a mapping. We define the Jordan derivation D: $M/ran(M) \rightarrow M/ran(M)$ by

 $D(m + ran(M)) = d(m) + ran(M)$, which is well-defined. It is notable that M/ran(M) and e αM are Banach Γalgebras, and so they are isomorphic. Thus, using the Γ-version in Corollary 1.5.3 (ii) of [6] it can be inferred that M/ran(M) is commutative semi-simple Banach Γ -algebra since e α M is commutative, semi-simple, and isomorphic to M/ran(M). Then D is a derivation, and D is zero on M/ran(M) [by observing the Γ-versions in necessary parts in [7], [10], [11]]. This gives that $d(m)\epsilon ran(M)$, and so by Lemma 2.1(b), d is a derivation. We note that d(M) is nilpotent, and so d is spectrally infinitesimal.

Corollary 2.3: Let M be Banach Γ-algebra M with a right identity e such that eαM be commutative and semisimple. If d, d_1 , d_2 are Jordan derivations on M, then the following conditions are satisfied:

(a) The range of a Jordan derivation d of M is contained in rad(M).

(b) $d_1 d_2$ is a derivation.

(c) For any positive integer k, the zero map is the only k−centralizing Jordan derivation of M.

Proof: (a) The proof directly follows from Theorem 2.2.

(b) Since d_1 and d_2 are Jordan derivations on M, by Theorem 2.2, d_1 and d_2 are derivations on M, and $d_1(M) \subseteq \text{ran}(M)$ and $d_2(M) \subseteq \text{ran}(M)$. Then for any \forall m, neM, and $\alpha \in \Gamma$, we have $d_1(m) \alpha d_2(n) + d_1(n) \alpha d_2(m) =$ 0. This shows that $d_1 d_2$ is a derivation on M.

(c) Suppose d: $M \rightarrow M$ is a k-centralizing for some positive integer k. Then by Theorem 2.2, we have $d(m)\alpha((ma)^k \alpha m) = d(m)\alpha((ma)^k \alpha m) - ((ma)^k \alpha m)\alpha d(m)\epsilon ran(M)\cap Z(M)$. Then $d(m)\alpha((ma)^k \alpha m) = \{0\}$, and so d(e) = 0. For any meM and $\alpha \in \Gamma$, let p = m - e α m. Then

 $p + e = ((p + e)\alpha)^{k} \alpha(p + e)$, and so $d(p) = 0$. This gives $d(m) = d(p + e\alpha m) = d(e\alpha m) = d(e)\alpha m = 0$. Therefore, $d = 0$.

Theorem 2.4: If M is Banach Γ-algebra together with M/ran(M) is commutative and semi-simple, then the following statements are satisfied:

(a) If d: M \rightarrow M is a derivation, then d: M \rightarrow ran(M) \subseteq rad(M).

(b) Every derivation d: $M \rightarrow M$ is spectrally infinitesimal.

(c) If d_1 and d_2 are derivations on M, then $d_1 d_2$ is a derivation of M.

Proof: (a) Since d is a derivation on M, d is a Jordan derivation on M, and so $d(M)$ is invariant under d by Lemma 2.1 (a).

(b**)** Applying derivations instead of Jordan derivations to the proof of Theorem 2.2, we get the required result. (c) $d_1 d_2$: M \rightarrow M is a derivation due to (a).

III. Jordan triple derivations on Banach Γ-algebras

 \forall m \in M, and $\alpha \in \Gamma$. Applying the fact that $m - e\alpha m\epsilon ran(M)$, we assume that $\text{e}\text{ad}(m - \text{e}\text{a}m) = 0,$ (6) \forall m \in M, and $\alpha \in \Gamma$. By eq. (5) and eq. (6) , we get $d(m - e\alpha m) = 2e\alpha d(m - e\alpha m) - d(e\alpha (m - e\alpha m)) = 0$, \forall m \in M, and $\alpha \in \Gamma$. This yields $d(m) = d(e\alpha m)$, \forall m \in M, and $\alpha \in \Gamma$. Applying the above relation and eq. (5), we obtain $d(m) = d(e\alpha m)$, which together with (5) shows that $d(m) =$ $\text{e}\alpha\text{d}(m)$, (7) \forall m \in M, and $\alpha \in \Gamma$. Therefore, d: M \rightarrow e α M is a mapping. **Corollary 3.2**: If M is a Banach Γ-algebra with a right identity e such that d: $M \rightarrow M$ is a Jordan left derivation and d: $M \rightarrow ran(M)$ is a mapping, then d is a zero mapping. **Proof**: Since d: M \rightarrow ran(M) is a mapping, d(M)⊆ran(M). By Theorem 3.1, we have $d(M) \subseteq ran(A) \cap \text{e}\alpha M = \{0\}$, for any $\alpha \in \Gamma$. Therefore, d is a zero mapping. **Theorem 3.3:** If M is a Banach Γ -algebra with a right identity e such that d: $M \rightarrow M$ is a Jordan triple left derivation, then d is a Jordan left derivation. **Proof:** Since d: $M \rightarrow M$ is a Jordan triple left derivation, we have $d((m\alpha)^3 \alpha m) = 3m\alpha m\alpha d(m),$ (8) \forall m \in M, and $\alpha \in \Gamma$. Writing $m + e$ for m in eq. (8), we get $2d(\text{m}\alpha m) + d(\text{m}) + 2d(\text{e}\alpha m) + d(\text{e}\alpha m) = 3\text{e}\alpha d(\text{m}) + 3\text{m}\alpha d(\text{m}) + 3\text{e}\alpha \text{m}\alpha d(\text{m}),$ (9) \forall m ϵ M, and $\alpha \epsilon \Gamma$. We have that $d(e) = 0$. Replacing m by -m in eq. (9), we get $2d(\text{m}\alpha m) - d(\text{m}) - 2d(\text{e}\alpha m) + d(\text{e}\alpha m) = 3\text{e}\alpha d(\text{m}) + 3\text{m}\alpha d(\text{m}) + 3\text{e}\alpha \text{m}\alpha d(\text{m}),$ (10) \forall m \in M, and $\alpha \in \Gamma$. We apply eq. (9) and eq. (10) to $d(m) + 2d(e\alpha m) = 3e\alpha d(m),$ (11) \forall m \in M, and $\alpha \in \Gamma$. Putting $m - e\alpha m$ for m in eq. (11), we get $d(m) = d(e\alpha m),$ (12) \forall m \in M, and $\alpha \in \Gamma$. Applying eq. (11) and eq. (12), we get $d(m) = e\alpha d(m),$ (13) \forall m ϵ M, and $\alpha \epsilon \Gamma$. Replacing m by e in eq. (8) to get $e\alpha d(e) = d(e) = 0$, for any $\alpha \in \Gamma$. Then, d($(m\alpha)^3$ am + 2mam + m + eamam + 2eam + $(e\alpha)^3$ ae) = 3mamad(m) + 3mamad(e) + 3ead(m) + 3eaead(e) + 3maead(m) + 3mad(e) + 3eamad(m) + 3eamad(e), \forall m \in M, and $\alpha \in \Gamma$. Since d:M→M is a Jordan triple left derivation, $d((m\alpha)^3 \alpha m) = 3m\alpha m\alpha d(m)$, \forall meM, and $\alpha \epsilon \Gamma$, and so we have $2d(\text{m}\alpha\text{m}) + d(\text{m}) + d(e\alpha\text{m}\alpha\text{m}) + 2d(e\alpha\text{m}) = 3e\alpha d(\text{m}) + 3\text{m}\alpha d(\text{m}) + 3e\alpha\text{m}\alpha d(\text{m})$, $\forall \text{m}\in\mathbb{N}$, and $\alpha\in\Gamma$. Appling eq. (12) and eq. (13) in the above relation, we have $3d(m\alpha m) + 3d(m) = 3d(m) + 3m\alpha d(m) + 3e\alpha m\alpha d(m)$, \forall m \in M, and $\alpha \in \Gamma$, and so $d(m\alpha m) = m\alpha d(m) + e\alpha m\alpha d(m),$ (14) \forall m \in M, and $\alpha \in \Gamma$. Using eq. (13) and eq. (14) , we have $d(m\alpha m) = e\alpha d(m\alpha m) = 2e\alpha m\alpha d(m),$ (15) \forall m ϵ M, and $\alpha \epsilon \Gamma$. This gives $2m\alpha d(m) = m\alpha$ ($2e\alpha m\alpha d(m) = m\alpha d(m\alpha m)$, and so we have $2m\alpha m\alpha d(m) = m\alpha d(m\alpha m)$, \forall m \in M, and $\alpha \in \Gamma$. As a consequence, we have $2d((m\alpha)^3 \alpha m) = 6m\alpha m\alpha d(m) = 3(2m\alpha m\alpha d(m)) = 3m\alpha d(m\alpha m).$ Thus, $2d((m + e)\alpha)^3 \alpha(m + e)) = 3(m + e) \alpha d((m + e)\alpha(m + e))$ $= 3 \text{mad}((m + e) \alpha (m + e)) + 3 \text{ead}((m + e) \alpha (m + e))$ $= 3 \text{mad}((m + e) \alpha (m + e)) + 3d((m + e) \alpha (m + e)),$ which yields $2d((m\alpha)^3\alpha m + 2m\alpha m + 2e\alpha m + e\alpha m\alpha m + m) = 3m\alpha d(m\alpha m + 2m) + 3d(m\alpha m + 2m)$ This shows that

 $3d(\text{m}\alpha\text{m}) = 6\text{m}\alpha d(\text{m})$, and so $d(\text{m}\alpha\text{m}) = 2\text{m}\alpha d(\text{m})$, \forall m \in M, and $\alpha \in \Gamma$.

Therefore, d is a Jordan left derivation on M.

Theorem 3.4: If M is a Banach Γ -algebra with a right identity e such that d: $M \rightarrow M$ is a linear mapping and d is a Jordan triple right derivation, then d is a Jordan right derivation.

Proof: Since d: $M \rightarrow M$ is a Jordan triple right derivation, $d(e) = 0$ and so we have

 $d((m + e)\alpha)^3 \alpha(m + e)) = 3d(m + e)\alpha((m + e)\alpha(m + e))$, \forall meM, and $\alpha \in \Gamma$. Thus, we have $2d(\text{m}\alpha m) + 2d(\text{e}\alpha m) + d(\text{e}\alpha m\alpha m) = 6d(\text{m})\alpha m + 2d(\text{m}),$ (16) \forall m \in M, and $\alpha \in \Gamma$. We write -m for m in eq. (16) to get $2d(m\alpha m) - 2d(e\alpha m) + d(e\alpha m\alpha m) = 6d(m)\alpha m - 2d(m),$ (17) \forall m \in M, and $\alpha \in \Gamma$. Using eq. (16) and eq. (17) , we have $d(m) = d(e\alpha m)$ and $2d(m\alpha m) + d(e\alpha m\alpha m) = 6d(m)\alpha m$. From above, we have $3d(\text{m}\alpha m) = 6d(\text{m})\alpha \text{m}$, which yields $d(\text{m}\alpha m) = 2d(\text{m})\alpha \text{m}$, \forall m ϵM , and $\alpha \epsilon \Gamma$. Therefore, d is a Jordan right derivation on M. **Theorem 3.5:** If M is a Banach Γ-algebra with a right identity e such that d: $M \rightarrow M$ is a Jordan right derivation, then d: ran(M) \rightarrow ran(M) is a zero derivation.

Proof: Since d: $M \rightarrow M$ is a right derivation and M is a Banach Γ-algebra with a right identity e, we get d(e) = 0. Again, if we fix peran(M), we get $(p + e)\alpha(p + e) = p + e$, $\forall \alpha \in \Gamma$

This gives $d(p) = d((p + e)\alpha(p + e)) = 2d(p + e) \alpha(p + e) = 2d(p)$. Therefore, $d(p) = 0$, \forall peran(M). Therefore, d: ran(M) \rightarrow ran(M) is a zero derivation.

IV. Discussion

We studied derivations such as Jordan left derivations, Jordan triple left(right) derivations on Banach Γalgebras M whereas Nilakshi Goswami [12] worked on the characterizations of Jacobson radicals of Γ-Banach Algebras in different perspectives. Also, Y. Ceven [15] showed that every Jordan left derivation together with an assumption on a completely prime Γ -ring is a left derivation on it whereas we proved that Jordan derivations and the product of any two Jordan derivations on a Banach Γ-algebra M with certain conditions are derivations as well as Jordan triple left(right) derivations on a Banach Γ-algebra M with a right identity e are Jordan left(right) derivations on M

V. Conclusion

The Jordan derivations and the product of any two Jordan derivations on a Banach Γ-algebra M are derivations based on the right identity e and the conditions that $e\alpha M$ is commutative and semi-simple. The Jordan triple left(right) derivations on a Banach Γ-algebra M having a right identity e are Jordan left(right) derivations on M. Finally, Jordan right derivation on a Banach Γ-algebra M with a right identity e is a zero derivation on the annihilator of M.

Acknowledgment

The author would like to thank the anonymous referees for their valuable suggestions and comments.

References

- [1]. Paul, A. C. and Halder, A. K. (2009), "Jordan Left Derivations of Two Torsion Free ГM –Modules", J. of Physical Sci. (ISSN: 0972- 8791), vol. 13, pp. 13-19.
- [2]. Paul, A. C. and Halder, A. K. (2010), "On Left Derivatives of Γ-rings", Bull. Pure Appl. Math., vol. 4, no. 2, pp. 320-328.
- [3]. Halder, A. K. (2021), "Commutativity of Prime Near Γ-rings with Nonzero Reverse σ-derivations and Derivations", IJRES (ISSN: 2320-9364(O),2320-9356(P)), vol. 9, no. 12,pp. 1-11.
- [4]. Halder, A. K. (2022), "Commutativity of Prime Γ-MA-semirings with None-zero Jordan Left Derivations and Left Derivations on Closed Lie Ideals", IJRES (ISSN: 2320-9364(O),2320-9356(P)), Vol. 10, no. 12, pp. 439 – 444.
- [5]. Dey, K. K. and Paul, A. C. (2012), "On Derivations in Prime Gamma Near-Rings", GANITJ. Bangladesh Math. Soc. (ISSN: 1606- 3694), vol. 32, pp. 23-28.
- [6]. Dales, H. G. (2000), "Banach Algebras and Automatic Continuity", Clarendon Press, Oxford.
- [7]. Singer, I. M.; Wermer, J. (1955), "Derivations on commutative normed algebras", Math.Ann. 129, pp. 260–264.
- [8]. Mehdipour, M. J., Moghimi, GH. R., and Salkhordeh, N., "Jordan derivations on certain Banach algebras", eprint arXiv:2306.12529. Acsi, M.and Ceran, S. (2007), "The commutatitvity in prime gamma rings with left derivations", In. Math. Forum, vol. 2, no. 3, pp.
- 103-108.
- [10]. Bresar, M. (1988), "Jordan derivations on semiprime rings", Proc. Amer. Math. Soc. Vol.104, no. 4, pp. 1003–1006.
- [11]. Thomas, M. (1988), "The image of a derivation is contained in the radical", Ann. of Math. (2) 128, no. 3, pp. 435–460.
- [12]. Goswami, N. (2012), "A Characterization of Jacobson Radical in Γ-Banach Algebras", Advances in Pure Mathematics, Vol. 2, pp. 413-418.

^{[13].} M. J. Ibrahem, N. (2021), "Banach gamma-algebra modules and full stability", Italian J. of Pure and Ap. Mathematics, N. 46, pp.164– 170.

^{[14].} Barnes, W.E. (1966),"On the Γ-rings of Nobusawa", Pacific J. Math., vol. 18, pp.411-422.

^{[15].} Ceven, Y. (2002), "Jordan left derivations on completely prime gamma rings", C.U. Fen- Edebiyat Fakultesi, Fen Bilimleri Dergisi, Cilt 23 Sayi 2.