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Abstract: The risk factors of high-tech projects are very diverse and complex. Previous research focuses on 
project prioritization by evaluating these interacting risk factors. However, the aggregation related to risk 
interactions has been largely overlooked, which may lead to the selection of inferior alternatives during the 
investment decision-making process. To address this issue, we propose a systematic approach that combines 
fuzzy best-worst method (BWM), 2-additive fuzzy measures, and hierarchical Choquet integrals (HCI) for 
aggregating project risk interactions and prioritizing investment projects. The proposed method utilizes the fuzzy 
BWM approach to determine the weights of the risk factors, leveraging expert assessments to gauge the intensity 
of impacts subjectively and linguistically. Then, we apply the maximum entropy principle to determine the 2-
additive fuzzy measure. Finally, we integrate the Choquet integral with the 2-additive fuzzy measure. To 
demonstrate its feasibility and advantages, the proposed method is applied to the risk assessment of high-tech 
project investment.
Keywords  Fuzzy BWM, Hierarchical Choquet integral, 2-additive fuzzy measure, High-tech venture capital.
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 11-06-2024                                       Date of acceptance: 23-06-2024
---------------------------------------------------------------------------------------------------------------------------------------

I. Introduction
In the realm of project management, high risk is perceived as a substantial obstacle to achieving project 

success (Ahmadabadi and Heravi, 2019). A project risk is defined as “an uncertain event or condition that, if it 
occurs, could positively or negatively affect one or more project targets” (Guide, 2008). Typical characteristics 
of project risk factors include limited predictability, extended risk exposure, substantial financial losses, and the 
interaction of multiple risk variables (Mohagheghi, 2020). For example, the successful test flight of a large 
aircraft in China, C919, occurred 16 years after the inception of the project. Given its status as a large passenger 
airplane, the C919 is significantly influenced by various environmental factors such as weather conditions, 
equipment reliability, radiation, and more. Therefore, ensuring product dependability and safety is of significant 
importance. In a multi-objective decision-making context, high-tech project investment around the selection of 
the optimal project for investment, striking a balance between project risks and potential rewards (Mohagheghi, 
2020). When a project is huge and involves high-tech developments, the complexity of PRA (project risk 
assessment) and investment is further increased (Mousavi, et al., 2015).

In response to the complexity and uncertainties inherent in high-tech projects, an increasing number of 
scholars have initiated research to explore effective methods for evaluating and investing in such projects 
(Moradi et al., 2017). Risk assessment demands that decision-makers identify key risk elements and potential 
hazards, gauge the level of risk along with its consequences, analyze decision variables, and quickly make 
effective decisions while considering diverse preferences (Ergu et al., 2014). PRA entails the utilization of 
historical data and expert judgment for risk identification. Employing a suitable decision-making method aims 
to derive an overall risk value for each project and derive the optimal investment decisions based on the risk 
value (Fang and Marle, 2012).

However, obtaining enough data sources from the historical risks associated with high-tech initiatives 
can often be challenging. High-tech project risk assessment often relies on expert judgment and expertise due to 
the insufficient historical data for conducting probabilistic analyses (Mohagheghi, 2020). The fuzzy theory was 
developed to cope with ambiguous and uncertain information or data in typical quantitative expressions for 
project investment appraisal (Zhao, 2016). Some of the most popular techniques in fuzzy theory are interval 
numbers, triangular fuzzy numbers, and trapezoidal fuzzy numbers (Li et al., 2021; Wang et al., 2021; 
Büyüközkan, 2021). In contrast, the occurrence of project risks in real-world projects depends on an interaction 
of several risk factors, including technology, production and development, environment, and marketing. There 
are overlaps and correlations among these risk indicators, and interdependence could result in the occurrence of 
one or more risks (Wang et al., 2020). Therefore, it becomes imperative to consider the interdependencies 
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among risk factors to enhance the effectiveness and precision of project risk assessment, particularly for 
complex high-tech projects (Guan et al., 2021; Tavana et al., 2021).

The best-worst method (BWM) is a multi-criteria decision-making (MCDM) method developed by 
Rezaei (2015), similar to the analysis hierarchical process (AHP) (Guo and Zhao, 2017; Rezaei, 2015). BWM is 
a pairwise comparison-based method that uses two evaluation vectors (the best criterion to other criteria and 
other criteria to the worst criterion) to obtain the decision criterion weights. In MCDM problems with n  

decision criteria, AHP requires  1 / 2n n   pairwise comparisons, while BWM requires only 2 3n   
comparisons (Rezaei, 2015). Compared with AHP, BWM has three advantages. The first is the fewer times of 
comparisons; the second is the structured comparing process; the third benefit is better consistency (Mi et al., 
2019). Due to the above advantages, the best-worst method (BWM) has been widely adopted for determining 
criterion weights in decision-making problems across various domains, including management, education, 
energy, and supply chain management. However, its application in the field of risk assessment has been 
relatively limited. Subsequently, to address issues related to assessment uncertainty, various uncertainty 
modeling techniques such as fuzzy sets, triangular fuzzy numbers, interval-valued multiplicative numbers, and 
probability hesitant fuzzy numbers have been employed to represent uncertainty within the BWM framework 
(Guo and Zhao, 2017). BWM has also been utilized to combine with other common aggregation operators like 
TOPSIS and VIKOR (Gupta and Barua, 2017; Gölcük, 2020). Additionally, the combination of BWM with 
fuzzy logic and group decision-making (GDM) has emerged as two popular areas of research (Mou, Xu and 
Liao, 2016; Guo and Zhao, 2017; Tavana et al., 2023).

The discrete Choquet integral, a mathematical tool incorporating fuzzy measures and weight 
assignments, offers a means to address uncertainty in discrete data (Corrente et al., 2016). Its application 
extends to domains such as MCDM and risk assessment. However, for decision problems involving n  criteria, 
there are 2 2n   coefficients are required to determine the fuzzy measures. Consequently, determining the fuzzy 
measures based on fuzzy integrals is often considered a mathematical programming problem, including the 
maximum entropy principle, the maximum split approach, the minimum variance approach, and a less 
constrained approach (Chen and Huang, 2019). Many researchers have conducted extensive investigations into 
how to reduce the computation of fuzzy measures, such as  -fuzzy measures, Möbius transformation, k -
additive fuzzy measures and p -symmetric measures (Murillo et al., 2017). To address criteria with a 
hierarchical structure, Sugeno (1995) introduced the hierarchical Choquet integral as a means to reduce the 
computational complexity of fuzzy measures (Sugeno et al., 1995). Recently, some scholars have investigated 
the combination of hierarchical Choquet integration with genetic algorithms and neural networks for addressing 
classification problems. The results indicate that machine learning incorporating Choquet integration offers 
enhanced interpretability (Chen and Huang, 2019).

Therefore, the main two motives of this paper are as follows:
(1) While quantitative risk assessment has improved rapidly and many methods have been introduced, 

the challenge of acquiring quantitative data has compelled experts to rely on personal experience and intuitive 
judgment for risk evaluation. MCDM techniques offer the capacity to assess, rank, and prioritize multiple 
decision criteria and alternatives. Since decision criterion weights usually need to be determined by domain 
experts, how to deal with the ambiguity, subjectivity, and consistency problems when determining criterion 
weight is one of the goals of this paper.

(2) Decision-making models based on fuzzy integrals encounter a significant challenge in situations 
with a high number of criteria, particularly in the identification of fuzzy measures. While experts can provide a 
fuzzy measure for an individual risk factor based on empirical judgment (Chen and Huang, 2016), practical 
applications often involve multiple factors contributing to project risk. As the number of risk factors grows, 
assigning correlation indicators for a subset of factors becomes not only highly subjective but also challenging. 
While the use of g

  fuzzy measures can simplify computational costs, it may also compromise the 
representational effectiveness of the measure (Murillo et al., 2017). How to make a good compromise between 
the complexity and the expression of interaction information is another motive.

To tackle issues related to the subjectivity and ambiguity in expert judgment, and interactions among 
evaluation criteria in PRA, this paper suggests a novel approach to address the problem of high-tech project risk 
assessment by merging fuzzy BWM, 2-additive fuzzy measure and HCI (hierarchical Choquet integral). The 
following are the main contributions:

Firstly, since the factors that cause the investment risk of a project are mainly qualitative indicators, it 
is difficult to assess the importance of the criteria with objective data. As an improvement of the AHP method, 
BWM has more simplicity and better consistency (Guo and Zhao, 2017). With the BWM approach, experts are 
only required to provide two comparison vectors. Additionally, the incorporation of triangular fuzzy numbers 
with BWM serves to mitigate the uncertainties associated with expert judgments to some extent.
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Secondly, the issue of interactive criteria has been frequently overlooked in existing MCDM evaluation 
models. To address this, our paper incorporates the hierarchical Choquet integral (HCI) theory into the multi-
criterion comprehensive evaluation. We employ the principle of maximum entropy to determine the indicator 
interaction coefficients, which subsequently lead to the determination of the 2-additive fuzzy measure. This 
approach not only takes into account indicator interactions but also makes a good compromise between 
computational complexity and the articulation of interaction information when determining the fuzzy measure.

The remaining sections of the paper are structured as follows: Section 2 presents the related research of 
existing literature in PRA. In section 3, the fundamental theories of triangular fuzzy numbers, BWM, and the 
detailed steps of the fuzzy BWM method are introduced. Section 4 introduces the method of MCDM-based 2-
additive-HCI. In section 5, the numerical experiment is carried out and compared with the other methods; and 
the last section gives a summary and some future work of this paper.

II. Related research
The following three aspects have been summarized from a review of the PRA methods and models: (1) 
traditional project risk assessment models, (2) research of the interrelation among project risks, (3) intelligent 
risk assessment.

2.1 Traditional project risk assessment models
Early project risk indicators were typically expressed in terms of a risk factor's probability to occur (P), 

the risk factor's corresponding impact on the project's objectives (I), or by multiplying P and I. The (P-I) risk 
matrix was also utilized by decision-makers to evaluate and categorize specific project risks (Fang et al., 2016). 
PRA is mostly dependent on MCDM approaches due to the complexity and variety of elements (Marle et al., 
2013). The AHP , a commonly employed (MADM) method, often integrates historical data and expert insights 
to quantitatively evaluate qualitative information (Aguilar Lasserre et al., 2009). However, when using AHP for 
decision-making, the elements need to satisfy the assumption of independence, while the actual risk factors have 
a complex hierarchical structure and the risk factors interact with each other. Additionally, the risk assessment 
produced by the AHP approach is very subjective, and the outcome is unreliable if the judgment matrix's 
consistency test is unsuccessful (Ergu et al., 2014). As a result, the AHP technique has some restrictions when it 
comes to solving such issues.

The MCDM approach was subsequently combined with fuzzy set theory to tackle ambiguity, 
subjectivity, and uncertainty in the decision-making process. Li et al. (2021) introduced a risk assessment 
method that employs a triangular fuzzy number to calculate risk values on expert opinions and applied an 
extended VIKOR method for risk prioritization (Li et al., 2021). Büyüközkan and Göcer (2021) recommended 
the integration of PFS, SAW, and VIKOR methods to mitigate the challenges related to subjective judgments 
and imprecision, and it is used to assess software development projects (Büyüközkan and Göcer, 2021). 
Aydemir and Yilmaz Gunduz (2020) examined how aggregation operators influence the decision-making 
process and utilized dombi operations to construct fermatean fuzzy aggregation operators (Aydemir and Yilmaz 
Gunduz, 2020). Pamučar et al. (2018) proposed an uncertainty approach based on interval-valued fuzzy rough 
numbers. By integrating the rough approach with traditional fuzzy methods, the subjectivity present when 
defining the boundaries of fuzzy sets is effectively eliminated (Pamučar et al., 2018). Rodríguez et al. (2016) 
present a hybrid technique based on fuzzy logic, which integrates fuzzy hierarchy analysis and a fuzzy inference 
system, and they consider this technique to provide better consistency for assessing the risk of complicated and 
unpredictable projects (Rodríguez et al., 2016). 

2.2 The interrelation among project risks
To address the challenge of interdependencies among risks, the analytic network process (ANP) has 

been proposed as an extended complementary method to the AHP, which does not have the assumption of 
internal and external independence and is a suitable method for resolving complex decision problems 
characterized by hierarchical structures (Ergu et al., 2014). Haeri and Rezaei (2019) proposed a hybrid approach 
integrating grey correlation analysis with BWM, aiming to enhance the consistency of judgment matrices and 
effectively capture interdependencies among decision criteria (Haeri and Rezaei, 2019). In contrast, the majority 
of MCDM techniques are grounded in the assumption of distinct decision criteria, exemplified by methods like 
the weighted arithmetic mean (WAM) and the ordered weighted average (OWA). Nonetheless, given the 
complexity and interrelationships inherent in the decision criteria, discrete Choquet integral (CI) is 
predominantly employed for aggregation in the realm of high-tech risk assessment and various other practical 
applications (Ruan, 2010). The Choquet integral aggregation function describes the relative importance of the 
decision criteria and their interactions.

The interaction of risks in high technology projects is becoming a growing concern, and more 
systematic and comprehensive PRA approaches are being proposed to analyze the issue. As an example, 
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bayesian belief networks (BBNs) represent a widely favored approach for managing complex systems and 
addressing issues of uncertainty (Biswas and Zaman, 2019). The subjective bias is eliminated by using expert 
judgment to construct models utilizing bayesian belief networks (Ojha et al., 2018). However, this risk analysis 
approach does not explicitly take into account the uncertainty related to the calculation of probabilistic 
parameters (Hu et al., 2013). Gölcük (2020) combined the interval type-2 fuzzy best-worst method (IT2F-
BWM) and perceptual reasoning to determine the relative importance of risk factors and apply them to the risk 
assessment of digital transformation projects (Gölcük, 2020). Many researchers also have used hybrid models 
that incorporate DEMATEL to address the interactions between risk factors, but it's worth noting that these 
models require a substantial body of expert knowledge to effectively formalize the interdependencies and 
impacts of the variables (Du and Li, 2021; Si, 2018). An exploration of project risks and their interplay can also 
be conducted through the application of methods such as structural equation modeling (SEM), social network 
analysis (SNA), and interpretative structural modeling (ISM) (Ahmadabadi and Heravi, 2019; Ergu et al., 2014; 
Wang et al., 2020).

2.3 Intelligent risk assessment
Regression analysis, decision trees, cluster analysis, and neural networks are just a few of the statistical 

and data mining techniques that have been utilized extensively to study the correlations between variables (Chen 
and Huang, 2020). Each of these approaches offers unique advantages and benefits. Regression analysis can be 
used to create predictions about future data and to identify connections between variables. Decision tree is a 
simple method for classifying projects based on the degree of risk. Similar projects can be divided using cluster 
analysis, and the risk factors that lead to such projects can then be further investigated. Because they are self-
organizing and self-learning, neural networks can solve challenging non-linear issues (Guan et al., 2021). 
However, rather than actual data, the majority of these models are based on simulation-generated data.

Generally, traditional MCDM methods assume that decision criteria are additive and independent. 
However, given the diversity and interactivity of project risk factors in real-world scenarios, most existing 
literature primarily emphasizes the consideration of interactions when determining criterion weights, with 
relatively limited attention paid to the interaction of criterion sets during the aggregation process (Zhang et al., 
2021). Additionally, conventional network analysis methods that account for interactions, such as (ANP), 
encounter more intricate consistency issues when constructing judgment matrices (Ergu et al., 2014). On the 
other hand, established machine learning approaches can effectively address non-linearity in aggregation, 
provided that historical data and expert experiences are readily available. Nevertheless, for project risk 
assessments where historical data and expert opinions are challenging to obtain, these methods may introduce 
some bias due to the limited sample size for training data.

To tackle these aforementioned challenges, this paper introduces an innovative MCDM fusion method. 
It harnesses the fuzzy BWM to determine criterion weights, reducing the workload associated with pairwise 
criterion comparisons and enhancing overall consistency. For multi-criteria decision problems, it integrates 
hierarchical Choquet integration with 2-additive fuzzy measures. This approach not only considers the 
interdependencies among criteria but also reduce the complexities involved in fuzzy measure calculations. 
Consequently, the proposed fuzzy BWM-HCI method presented in this paper offers a more suitable approach for 
project risk assessment.

III. Fuzzy best and worst method (F-BWM)
To deal with the ambiguity, subjectivity, and consistency problems when determining criterion weight, this 
paper adopts the fuzzy BWM method. the fundamental theories of triangular fuzzy numbers, BWM, and the 
detailed steps of the fuzzy BWM method are introduced in this section.

3.1 Triangular fuzzy number (TFN)
The fuzzy set theory was proposed by Zadeh in 1965. As a generalization of classical set theory, fuzzy set theory 

can solve practical problems in uncertain environments (Zadeh, 1999). The fuzzy set  ,a U m̃ , where U  is 

a set of [0,1], 
m

 is the membership function given by each element in the terminological domain  au x̃ , 
which can be mapped to the real interval [0,1].

Definition of a fuzzy number. Let  a F R̃  be a fuzzy number, then there exists 0x R , such that 
 0 1au x ̃ .

For any  0,1  ,  , aa x u x



  

 ̃̃  is a closed interval, where 
R

 is a real number and  F R  is a 
closed interval.
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Definition of the triangular fuzzy number (Guo and Zhao, 2017). The fuzzy number ̃  on R  is defined as 

the triangular fuzzy number (TFN) if its affiliation function    : 0,1x R


 ̃  is equal to

 

0       ,

,

,

0       ,

a

x l
x l l x m
m lu x
u x m x u
u m

x u






  
 

 


  
 




̃

. (1)

Where 
, ,l m u

  l m u       represents the lower, median, and upper limits of the support degree. 

they are exact values, and TFN can be expressed as a ternary array  , ,a l m u̃ .

Definition of GMIR. Let the graded mean integral of TFN be expressed as (GMIR),  iR ã  denotes the 

ordering of the triangular fuzzy numbers, then for  , ,i i i ia l m u̃ ,  iR ã  is defined as:

 
4

6
i i i

i
l m uR a  

̃
. (2)

The above formula converts the fuzzy numbers into crisp values, which are easy to calculate and rank the 
final weights.

3.2 Best and worst method (BWM)
Since risk assessment is mostly a qualitative attribute, to minimize the errors caused by the subjectivity of expert 
evaluation, fuzzy BWM was introduced based on fuzzy set theory under the guidance of the study by Guo and 
Zhao (2017). Assuming that there are n  criteria for the study object, the linguistic variables of the pairwise 
comparison results of each decision criterion were first converted into triangular fuzzy numbers, and a fuzzy 
BWM model was established accordingly to solve for the minimum deviation. The rules of language value 
variables and trigonometric fuzzy number conversion are listed in Table 1.

Table 1 Language variables and trigonometric fuzzy number conversion rules
Linguistic terms Membership function

Equally Importance (EI) (1,1,1)
Weakly Importance (WI) (2/3,1,3/2)

Fairly Importance (FI) (3/2,2,5/2)
Very Importance (VI) (5/2,3,7/2)

Absolutely Importance (AI) (7/2,4,9/2)

According to the basic principle of BWM, it is known that it is not necessary to make a two-by-two comparison 
for each criterion but only to find the most and least important criterion in a set (Ruan, 2010; Rezaei, 2015). The 
fuzzy best-worst method (fuzzy BWM) can be used to determine the fuzzy weights of the criteria, and then the 
GMIT method is used to calculate the crisp values of the attributes (Guo and Zhao, 2017).

The following will describe the detailed steps of fuzzy BWM to calculate the attribute weights.
Step1: Establishing an evaluation index system. The evaluation index system consists of a set of evaluation 

criteria, and different index values can reflect the performance of different projects. Suppose there are n  

evaluation criteria  1 2, , nc c c… .
Step2: Determine the best (most important) and worst (least important) criteria. In this step, the decision 

maker should determine the best and worst criteria based on the established evaluation index system. The best 

criterion is denoted as Bc , and the worst criterion is denoted as Wc .
Step3: Determine the fuzzy preferences of other criteria for the best and worst criterion.
Using the linguistic terms of the experts listed in Table 2 to determine the fuzzy preferences of the best 

criteria for all criteria. Then, the obtained fuzzy preferences are converted to TFN according to the conversion 
rules shown in Table 2. The obtained fuzzy best-to-other vector is:

 1 2, , ,B B B BnA a a a̃ ̃ ̃ ̃… .

Where BÃ  denotes the fuzzy best vector, Bjã  denotes the fuzzy preference of the best criterion Bc  to 

criterion j , 1,2, ,j n … . It can be known  1,1,1BBa ̃ .
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Using the linguistic evaluation of the experts listed in Table 2, the fuzzy preferences of other criteria for the 
worst criterion can be determined, and then they are converted to TFN according to the conversion rules listed in 
Table 2. The fuzzy others-to-worst vector is:

 1 2, , ,w w w nwA a a a̃ ̃ ̃ ̃… .

Where wÃ  denotes the fuzzy others-to-worst vector, iwã  denotes the fuzzy preference of the criterion 
i

 for 

worst criterion Wc , 1,2, ,i n … . It can be known  1,1,1wwa ̃ .
Step4: The linear model proposed by Guo and Zhao (2017) was used to calculate the criterion fuzzy weights 

 
* * *
1 2, , , nw w w̃ ̃ ̃… ,  

* * * *, ,k k k  .

   

   

 

*

* * *

* * *

1

min

, , , ,
, ,

, ,
, ,

, ,
. .

0

1

1,2,

w w w
B B B

Bj Bj Bjw w w
j j j

w w w
j j j

jw jw jww w w
w w w

w w w
j j j

w
j

n

j
j

l m u l m u k k k
l m u

l m u
l m u k k k

l m u
s t l m u

l

R w

j n







 






 





  



 












 ̃

…

，，

，，

. (3)

By solving model (3), the optimal fuzzy weights  
* * *
1 2, , , nw w w̃ ̃ ̃…  can be obtained. The fuzzy weights of the 

criteria represented by TFN need to be converted to crisp values by GMIR.
However, when BWM deals with decision problems involving more than three criteria, more than one 

optimal solution is often obtained (Rezaei, 2016). To improve the decision-making efficiency while avoiding the 
subjective bias indirectly caused by multiple solutions, the maximum and minimum values of the weights are 
determined based on the minimum deviation and the interval of each weight placed respectively.

   

   

 

* * *

* * *

1

min

, , , ,
, ,

, ,
, ,

, ,
. .
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w w w
B B B

Bj Bj Bjw w w
j j j
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j j j

w
j

n

j
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s t l m u

l

R w
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







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…

，，

，，

. (4)
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   

   

 

* * *

* * *

1

max

, , , ,
, ,

, ,
, ,

, ,
. .

0

1

1,2,
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Bj Bj Bjw w w
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w w w
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j j j
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j
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




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 ̃

…

，，

，，

. (5)
By solving model (4) and model (5), the interval of the weights within the real numbers can be obtained, 

denoted as  min max,   . Finally, the center of the interval is used to denote the upper, median, and lower 
limits of the triangular fuzzy number, respectively.

Consistency analysis is performed based on determining the minimum deviation, and consistency is an 
important indicator to test the merit of the comparison results (Lootsma, 1980; Van Laarhoven and Pedrycz, 

1983; Murofushi and Sugeno, 1989). By solving Eq (6) for different Bwu , the maximum possible   can be 
found, which is employed as a consistency index for fuzzy BWM. The obtained consistency index about 
different linguistic terms of decision-makers for fuzzy BWM is listed in Table 2.

   
2 21 2 0Bw Bw Bwu u u      . (6)

Table 2 Consistency index
EI WI FI VI AI

Bwã (1,1,1) (2/3,1,3/2) (3/2,2,5/2) (5/2.3,7/2) (7/2,4,9/2)
CI 3.00 3.80 5.29 6.69 8.04

By solving model (3) the uniqueness 
*

  can be determined, and the CR  of the fuzzy BWM is calculated 
using equation (7) proposed by Guo and Zhao (2017).

*

CR
CI




. (7)

For a given CI , the smaller the 
*

 , the smaller the CR . It indicates the better consistency of pairwise 
comparison results and vice versa.

IV. The method of MCDM-based hierarchical Choquet integral
To make a good compromise between the complexity and the expression of interaction information is another 
motive. This section introduced the method of MCDM-based 2-additive-HCI. The fundamental theories and the 
detailed steps of the 2-additive-HCI model are introduced as follows.

4.1 Fuzzy measure and interaction index
In 1974, a Japanese scholar, Sugeno (1989) proposed a fuzzy measure to solve the multi-attribute decision 
problem where attributes are related but not additive (Murofushi and Sugeno, 1989; Grabisch, 2020; Nguyen, 
2016; Pham and Yan, 1997). It can represent the combined importance of one or more attributes and more 
accurately describes the interaction between multiple attributes. The relevant definitions and concepts are as 
follows.
Definition of a fuzzy measure. Given a set S , and any subset X  of S , the function : [0,1]   is called a 
fuzzy measure on X if the following properties are satisfied.

(1)   0   and   1S  ,

(2) M N S   ,    M N  .
Definition of a Möbius transform of a fuzzy measure. Given a non-empty set S , and any subset X  of S , 
for any set function : X R  , its Möbius transform is defined by:
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     1 ,T K

K T
m T K T S





   
. (8) 

The Möbius transform provides an alternative representation of a fuzzy measure. This is a one-to-one 
correspondence between   and m . The fuzzy measure coefficients are computed from the Möbius 
representation using the Zeta-transform:

   ,
M T

T m M T S



  
. (9)

Definition of a 2-additive fuzzy measure. A fuzzy measure   is called a 2-additive fuzzy measure, if for all 
T  satisfying 2T  ,   0m T  , there exists at least one subset T  of S  with 2 elements such that   0m T  .

Therefore, according to Möbius transform coefficients, K S , 2K  , the 2-additive fuzzy measure is 
measure is defined by

 
 ,

i ij
i K i j K

K m m

 

  
. (10)

Definition of the Shapley value. let   be a fuzzy measure on set S  with n  elements. Then the Shapley value 
of the element i S  is defined by:

   
 

1

0 \

1 ! !
!

n

i iT T
k T S i

T k

n k k
I

n
 



 



 
  

. (11)
The interaction of any two elements is defined as follows.

Definition of the interaction of any two criteria. The interaction of any two elements with respect to fuzzy 
measure   is defined by:

 

 
 

 

2

0 \ , ,

2 ! !
1 !

n

ij ijT iT jT T
k T S i j

T k

n k k
I

n
   



 



 
   


 

. (12)
The above index can be interpreted as positive or negative synergy among various elements. For example, if 

ij i jI I I  , we call the elements  ,i j  complementary; if ij i jI I I  , we say they are redundant; otherwise, 
they are independent.

In the 2-additive fuzzy measure, the interaction between three or more decision criteria is zero and the 
interaction coefficients are not given arbitrarily.

For any 
T S

, any 
i T

,any 
\j T i

, the ijI  should be satisfied:
     2 / 1I ij I i n   &      2 / 1I ij I j n  . (13) 

Let         min 2 / 1 ,2 / 1ijt I i n I j n   , Then the value of the interaction be restricted to the interval 
,ij ijt t 

  .

4.2 The maximum entropy principle determined the 2-addition fuzzy measure
Discussing the importance of risk factors and interaction indicators based on fuzzy measures not only takes into 
account dependencies but also provides better interpretability. In this paper, we adopt the maximum entropy 
principle of 2-additive fuzzy measures, which is a compromise between the complexity and expressiveness of 
fuzzy measures. The specific steps are as follows.

Step1: The determination of importance weights for each criterion is carried out using the best and worst 
methods, as elaborated in detail in section3.2.

Step2: Estimate the degree of the interaction corresponding to a particular interval.
In practice, to present the risk assessors’ uncertainty about the interaction of the factors, we allow the 

interaction to be estimated within a subinterval. In order to determine the interaction between the criteria  ,i j , 
the interval can be divided into seven subintervals. In this paper, we used “HR”, “MR”, “LR”, “NI”, “LC”, 

“MC” and “HC” to represent the seven categories. Denote the range of values of interaction  I ij  as the 

interval ,d u
ij ij ijt t t 

  (
, 1,2, ,i j n

, and 
i j

)
An interaction is explained as the complementarity or redundancy of any two factors by the assessor. As Fig.1 

shows, the seven subintervals are explained as the two factors i  and j  have different degrees of interaction. 
The risk assessor needs to estimate the degree of the interaction.
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5
7 ijt 3

7 ijt 1
7 ijt 1

7 ijt
3
7 ijt

5
7 ijt

Hight degree of redundancyMedium degree of redundancyLow degree of redundancyAlmost have not interactionLow degree of complementarityMedium degree of complementarityHight degree of complementarity

ijt ijt

Fig. 1 The degree of interaction in different intervals

Step3: Determination of interaction values using the principle of maximum entropy.
The higher the entropy value of a fuzzy measure means that the fuzzy measure contains more uncertainty or 

information. The maximum entropy principle can be used to determine the unknown variables given some 
constraints (Bao, Wu and Li, 2018).

Definition of Marichal entropy. The entropy of a fuzzy measure   is defined as:

 
 

    
1 \

1 ! !
!

n

i T S i

n T T
H h iT T

n
  

 

 

  
. (14)

Where    lni i ih x x x  , is called the Shannon entropy. 
For the 2-additive fuzzy measure, we have

 
 

   
1 \

1 ! !
!

n

i T S i j T

n T T
H h m i m ij

n


  

   
  

 

  
. (15)

After we obtain the weight of a criterion (determined by experts) and the boundaries of the interaction of any 
two criteria, the interaction values can be obtained by the following optimization problem.

 
 

     

 

 

1 \ \

1

1 ! ! 1max
! 2

,

,
 s.t.

1

, 1,2, ,

n

i T S i j S i j T

i

ij

n

i
i

n T T
H h I i I ij I ij

n

w I i

I ij t

w

i j i j



   



   
   

 

 











  

   



且 . (16)
Step4: Determine the corresponding Möbius transform coefficients.
For the 2-additive fuzzy measure, the interaction of any order can be written as (Bao, Wu and Li, 2018):

       
 

     

   

 

,

\

1 1
2 3

1
2

0, 2.

i S i j S

j S i

I m a i m ij

I i m i m ij

I ij m ij

I A A

 




    








 




 



  

 



. (17)
which in turn gives
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       
 

     

   

 

,

\

1 1
2 6

1
2

0, 2.

i S i j S

j S i

m I I i I ij

m i I i I ij

m ij I ij

m A A

 




    








 




 



  

 



. (18)
Therefore, we can obtain the Möbius coefficients of any subset of the criteria according to Eq (18).
Step5: Determined the 2-additive fuzzy measure values for any subsets
Thus far, we have obtained the weight of a criterion and the interaction of any two criteria. According to Eq 

(10), the transformation relationship between the fuzzy measures and the Möbius transform coefficients, then, 
the 2-additive fuzzy measure of any subset of the criterion can be obtained.

4.3 Hierarchical Choquet integral

For a project risk assessment question, Let  1 2, , , mA A A A  be a set of alternatives,  1 2, , , nC C C C be 

a set of criteria, and  1 2, , ,j nw w w w be the weights of criteria, satisfying 0 1jw   and 1
1n

jj
w


 . 

Experts give his payoff judgments iA  to jC . The hierarchical Choquet integral plays an important role in 
reducing the number of fuzzy measures in multi-attribute index problems.

Definition of the discrete Choquet integral. Given a set S with elements  1 2, , , nx x x , the discrete Choquet 

integral of function :f s R

  with respect to fuzzy measure 


 is defined as:

         1
1

n

i i i
i

f d f x f x A 




 
. (19)

Where the subscript  i  indicates that the indices have been permuted so that 

        1 2 nf x f x f x   , and       , ,i i nA x x .
Decision-making systems can be modeled by fuzzy integral-based hierarchical MCDM. The concept of the 

hierarchical Choquet integral was proposed by Sugeno et al. (1995) to decompose a Choquet integral model into 
several sub-Choquet integral models (Sugeno et al., 1995). The three-level MCDM model based on hierarchical 
Choquet integration is given in Fig.2.

kn
nC

  c if c d
Z

2
1C

1 1  ki
c f c d

  ni
cn nf c d

1
1
kC

1
nC

Fig.2 The three-level MCDM model based on hierarchical Choquet integration

The evaluated value of the parent attribute in hierarchical MCDM is calculated from the Choquet 
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integral of the sub-attributes. As shown in Fig.2, the evaluation value of the attribute 1C  is obtained by 

calculating the Choquet integral of the attribute 
1 1
1 1

kC C ; the evaluation value of the attribute nC  is obtained 

by calculating the Choquet integral of the attribute 
1 kn
n nC C ; and the comprehensive evaluation value of the 

whole alternatives is obtained by calculating the Choquet integral of the attribute 1 nC C . Based on the 
comprehensive evaluation value of the alternatives, we rank the alternatives and select the optimal one.

V. Numerical experiments
It becomes difficult for venture capital firms to select suitable investment targets from projects. PRA 

usually employs the method of expert identification. On the one hand, it can fully leverage experts’ rich 
theoretical knowledge and valuable practical experience; on the other hand, it makes the identification and 
interrelationship between the indexes highly subjective.

In this section, to demonstrate the practicability and effectiveness of the HCI methods, a high-tech 
project risk assessment question is taken as an example. The identical example is also employed in the literature 
(Zhang, 2001; Xu and Peng, 2005). The literature (Zhang, 2001) uses classical BP neural networks to evaluate 
the risk of high-tech venture capital projects. The literature (Xu and Peng, 2005) uses a variable structure 
classical BP neural network for evaluation. While the neural network is good at addressing the non-linear 
interrelationships of risk factors, the utilization of neural network methods for risk assessment in this question 
may introduce some bias due to the small sample size. This paper uses the traditional multi-attribute decision-
making method to assess the project risks. combining the subjective weights calculated by fuzzy BWM with the 
2-additive fuzzy measure determined by maximum entropy. Then, the overall risk value is aggregated using 
HCI.

5.1 Calculate the attribute weights by fuzzy BWM
According to section 3.2 to calculate the subjective weights, the detailed processes of the proposed method are 
following.

Step1: Construct a risk indicator system for projects.
As the main reference, the investment risks of high-tech projects are subjected to a comprehensive evaluation 

of risk factors, taking into account the key elements as illustrated in Fig.3.hightech project risk assessment index systemhuman resourceU2Rationality of theoretical basis U1Information ResourcesU3Research and DevelopmentU4Technology PracticalityU5Technology CompatibilityU6Technology LifecycleU7Technology MaturityU8Production equipment levelU9Energy material supplyU10Production staff composition U11Product CompetitivenessU12Potential competitive impacts U13Marketing capabilitiesU14Organisationa rationality of enterprises U15Science of Decision MakingU16Managerial quality and experience U17Impact of national industrial policy U18Macroeconomic impactU19Natural EnvironmentU20Environmental RisksC6Managing RiskC5Marketing  riskC4Production riskC3Technology risk C2R&D risk C1

Fig.3 High-tech projects risk assessment index system

In a comprehensive multilayer index system, interdependencies tend to arise among the subsystems. 

For example, the criteria 2U  (human resources) and 4U  (R&D conditions) in 1C (R&D risk) are 

interdependent; the criteria 5U  (technological maturity) and 7U  (technical compatibility) in 2C  (technology 
risk) are also interdependent. Therefore, this is not an internally independent hierarchy structure. The AHP 
method cannot be used to determine the weight of each criterion. So, the fuzzy BWM method is introduced to 
solve the indicator weighting problem in this paper.
Step2: Use expert scoring to give an evaluation matrix and best-worst criteria
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16 high-tech projects in Fujian province were selected for investment evaluation in China (Zhang, 2001). Since 
there are more qualitative factors in the index to measure the investment risk of high-tech projects, the expert 
scoring method is used for each risk index with five levels, 0.1, 0.3, 0.5, 0.7, and 1, respectively. When scoring, 
the experts fully review and analyze the business plan to give the scoring value of each risk indicator. The 
degree of relevant risk is judged by the evaluated project’s performance on this indicator. Thus, the expert 
evaluates the 16 projects according to the risk index system and their performance. A higher value indicates 
better performance in a specific aspect of the project, corresponding to a lower level of risk. The expert 
evaluation matrix is shown in Table 3.

Next, we use the 0-1 matrix to determine the best and worst criteria. Suppose there exist n  criteria, members 

of the set 1 2, , nc c c… . compare the importance between ic  and jc , and use ijf  to show the degree of 

importance. If ic  is more important than that jc , then we can let 1ijf  , and 0jif  . If ic and jc  are equally 

important, then 1ij jif f  . The importance ranking matrix of the criterion values is:

11 1

1

n

n n

n nn

f f
F f

f f


 

 
 

 

 
  ,

, 1,2, ,i j n

In this paper, the 0-1 matrix will be determined by multiple decision-makers. Calculate the average of the 
rows of the matrix F  and arrange them from largest to smallest, then determine the best and worst criteria.

Then, the importance of the parent attribute and sub-attribute are judged in two by two, respectively. The 0-1 
matrix of indicators is obtained from three experts. The average value of the 0-1 matrix gives:

2 6 5 4 1 34.67 4.33 3.33 3 2.67 2f f f f f f            

The best and worst criteria are 2C  and 3C . Similarly, the sub-criteria under each risk indicator are treated.
Step3: Determine the fuzzy preferences of other criteria for the best and worst criterion.
After gaining the best and worst criteria, the expert compares the other criteria with the best and worst criteria 

by using the linguistic terms listed in Table 2. Then, according to the conversion rules, the obtained fuzzy 
preferences are converted to TFN. The result of the best-to-other vector and other-to-worst vector is shown in 
Table 4 and Table 5.

Step4: Calculate the fuzzy criterion weights.
Since the parent attributes involve more than three criteria, there often is more than one optimal solution. We 

adopt the maximum and minimum values of the weights to determine the weight interval based on the minimum 
deviation (Guo and Zhao, 2017). By solving model (4) and model (5), the median value of the interval is used to 
represent the triangular fuzzy weight of the criteria. By solving model (3), we can obtain the unique optimal 
fuzzy weight values for the sub-indicators. After solving the fuzzy weights of all indicators, they are converted 
into crisp values. The subjective weights of the criteria are shown in Table 6.

5.2 Determined the 2-addition fuzzy measure and calculated the risk evaluation value
The second step is to obtain the interaction of any two criteria and a fuzzy measure of sub-attributes. 

According to the steps of section3.2, based on the importance of each sub-criteria and the degree of interaction 
estimated by the risk assessor, we obtain the boundaries of the interactions of any two criteria. The interaction of 
sub-attributes is reported in Table 7. To obtain the interaction between sub-attributes, the optimization problem 
(16) is solved. According to Eq (18), the result of interaction value and Möbius coefficients of any two sub-
attributes could be derived, as shown in Table 7. And then, based on Eq (10), the 2-addictive fuzzy measures are 
reported, as shown in Table 8.

In the following, we can calculate the risk evaluation value of sub-criteria by Choquet integral operator. 
Based on the fuzzy measure values calculated in Table 8 and the evaluation matrix in Table 3, according to Eq 
(19), each parent attribute’s risk value is calculated by Lingo18. The specific results are shown in Table 9.

Table 9 The value of the parent attribute’s risk value
project C1 C2 C3 C4 C5 C6

1 0.865 0.727 0.957 0.805 0.765 1.000

2 0.569 0.620 0.654 0.553 0.700 0.639

3 0.480 0.382 0.411 0.309 0.300 0.239

4 0.500 0.451 0.654 0.434 0.700 0.560

5 0.551 0.687 0.805 0.941 0.765 0.518
6 0.853 0.870 0.957 0.941 0.808 0.389
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7 0.853 0.870 0.957 0.941 0.765 0.679

8 0.680 0.559 0.672 0.586 0.700 0.677

9 0.742 0.559 0.700 0.586 0.660 0.639

10 0.825 0.687 0.957 0.941 0.765 0.677

11 0.566 0.652 0.654 0.586 0.572 0.757

12 0.742 0.687 0.805 0.941 0.765 0.518

13 0.598 0.405 0.521 0.434 0.572 0.338

14 0.959 0.768 0.957 0.805 0.700 0.677

15 0.757 0.768 0.957 0.941 0.700 0.639

16 0.680 0.559 0.654 0.586 0.700 0.575

The risk assessor considered the parent criteria to be largely independent of each other, and therefore 
the interaction between the criteria was evaluated as "NI". Based on the importance of the criteria obtained in 
Table 6, the fuzzy measures of the parent criteria were calculated using the same method as for the sub-criterion 
and the result is shown in Table 10. Then based on Table 9 and Table 10, the overall risk value of the project 
was obtained by Choquet integral, as shown in Table 11.

5.3 Comparative analysis
A comparison analysis is conducted in this sub-section to demonstrate the effectiveness of our 

proposed combined method. When the risk factors in this MCDM problem are assumed to be independent, the 
Shapley value of each attribute represents its degree of importance. We employ both objective methods 
(entropy) and subjective methods (FUZZY BWM) to determine attribute weights. By comparing the weighted 
average operator (WOA) with the Choquet integral operator [15], we can integrate different weights and 
operators to calculate the overall risk value, as illustrated in Table 11.

Table 11 The value of risk value of the sub-criterion 
Project FBWM- OWA Entropy- OWA FBWM- g CI Entropy - g CI FBWM- HCI

1 0.846 0.861 0.878 0.853 0.817

2 0.645 0.604 0.662 0.626 0.629

3 0.347 0.34 0.368 0.356 0.337

4 0.561 0.488 0.595 0.530 0.539

5 0.727 0.713 0.770 0.694 0.696

6 0.828 0.913 0.871 0.846 0.776

7 0.848 0.81 0.887 0.842 0.822

8 0.647 0.641 0.668 0.646 0.632

9 0.641 0.683 0.660 0.650 0.624

10 0.790 0.827 0.850 0.794 0.764

11 0.645 0.647 0.646 0.654 0.632

12 0.745 0.727 0.784 0.733 0.715

13 0.477 0.46 0.507 0.478 0.458

14 0.794 0.817 0.826 0.813 0.769

15 0.777 0.766 0.809 0.778 0.759

16 0.626 0.63 0.661 0.639 0.614

To further observe the impact of subjective and objective weights, as well as the aggregate operator 
considering interactions, on project investment decisions, a line graph was plotted. Fig. 4 reveals that the 
optimal and suboptimal investment projects determined by the proposed approach align closely with the 
outcomes of the other five methods. Moreover, the overall trend analysis suggests that the results from these 
methods exhibit a similar pattern. Furthermore, when disregarding relevance, the assessed project risk value 
generally surpasses the risk value based on the correlation scenario. Such as project 6 and project 1 are heavily 
influenced by the ranking of risk values. Project 6 exhibits a lower risk value compared to project 1 when 
accounting for subjective weights or criterion relevance. In contrast, when utilizing objective weights and 
disregarding relevance, project 6 displays a significantly higher risk value than project 1.
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Fig. 4 The line graph of comparative methods

In other aspects, the HCI model proposed in this paper is more interpretable compared to other models. 
To illustrate this, a radar chart depicting the sub-Choquet integral is generated for selected projects. As depicted 
in Fig. 5, project 1, despite exhibiting a lower risk in the environmental dimension, has higher risks in 
technology and marketing dimensions compared to project 7. Consequently, project 7 is considered a more 
favorable choice than project 1. Similarly, project 13 carries lower R&D risk than project 4, yet its risks in 
environmental production and management dimensions outweigh those of project 4, resulting in a higher overall 
risk for project 13 compared to project 4.

Fig. 5 The radar chart of the parent criterion for some projects

VI. Conclusions
Given the intricate and diverse factors associated with high-tech projects, project risk evaluation is 

becoming a challenging task. In this paper, the approach based on the fuzzy best-worst method (BWM), 2-
additive fuzzy measures, and hierarchical Choquet integrals is proposed. This method relies on the fusion of 
subjective judgment and empirical insights from risk assessors. It utilized fuzzy BWM to ascertain the 
significance of individual criteria and derives interaction coefficients for any pair of criteria based on the 
principle of maximum entropy. Subsequently, by establishing the connections between 2-additive fuzzy 
measures, Möbius transform coefficients, and interaction coefficients, we obtained the fuzzy measure of the 
attribute set. Finally, we employed the hierarchical Choquet integral (HCI) to consolidate decision-making 
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information, determined the overall investment risk value for each project, and identified the most suitable 
investment project.

The HCI decision-making model is successfully applied to the project risk assessment of venture 
capital. The results shown that the comprehensive evaluation value of project risk was low compared to other 
traditional methods when attribute correlation was taken into account, but the overall trend was consistent. In 
addition, the proposed method is more appropriate and more interpretative than other traditional methods.

In forthcoming research, it will be imperative to ensure that the assessment of investment projects 
reflects the balance between risk and returns. The approach introduced in this paper would be effectively 
employed for similar assessments of project returns. Additionally, as we encounter more high-dimensional data 
and contend with the scarcity of expert information, the identification of fuzzy measures would pose greater 
challenges for the Choquet integral (CI) in addressing real-world issues. Therefore, future endeavors would 
learn data-driven methodologies to objectively and autonomously identify fuzzy measures.
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Table 4 best-to others vectors
Index I Best-to-other vector Sub-index I Best-to-other vector

R&D riskC1 AI (7/2,4,9/2)

U1 VI (5/2,3,7/2)
U2 EI (1,1,1)
U3 VI (5/2,3,7/2)
4 FI (3/2,2,5/2)

Technical riskC2 EI (1,1,1)

U5 FI (3/2,2,5/2)
U6 VI (5/2,3,7/2)
U7 FI (3/2,2,5/2)
U8 EI (1,1,1)

Production 
riskC3 AI (7/2,4,9/2)

U9 FI (3/2,2,5/2)
U10 EI (1,1,1)
U11 AI (7/2,4,9/2)

Marketing riskC4 VI (5/2,3,7/2)
U12 EI (1,1,1)
U13 FI (3/2,2,5/2)
U14 VI (5/2,3,7/2)

Managing 
RiskC5 FI (3/2,2,5/2)

U15 AI (7/2,4,9/2)
U16 EI (1,1,1)
U17 FI (3/2,2,5/2)

Environmental 
RisksC6 WI (2/3,1,3/2)

U18 EI (1,1,1)
U19 VI (5/2,3,7/2)
U20 FI (3/2,2,5/2)

Table5. others-to-worst vectors
Index I other-to-worst vector Sub-index I Best-to-other vector

R&D riskC1 WI (2/3,1,3/2)

U1 WI (2/3,1,3/2)
U2 VI (3/2,2,5/2)
U3 EI (1,1,1)
4 FI (3/2,2,5/2)

Technical 
riskC2 AI (7/2,4,9/2)

U5 FI (3/2,2,5/2)
U6 WI (2/3,1,3/2)
U7 EI (1,1,1)
U8 FI (3/2,2,5/2)

Production 
riskC3 EI (1,1,1)

U9 FI (3/2,2,5/2)
U10 VI (5/2,3,7/2)
U11 EI (1,1,1)

Marketing 
riskC4 FI (3/2,2,5/2)

U12 VI (5/2,3,7/2)
U13 FI (3/2,2,5/2)
U14 EI (1,1,1)

Managing 
RiskC5 VI (5/2,3,7/2)

U15 EI (1,1,1)
U16 AI (7/2,4,9/2)
U17 VI (5/2,3,7/2)

Environmental 
RisksC6 WI (2/3,1,3/2)

U18 VI (5/2,3,7/2)
U19 EI (1,1,1)
U20 FI (3/2,2,5/2)

Table 6 Parent criteria and sub-criteria weights
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Index Fuzzy density
(k=0.0797)

Crisp 
value

Sub-
index Fuzzy weight Crisp 

value

R&D riskC1
(k=0.2087)

(0.1320,0.1545,0.2620) 0.0932

U1 (0.1294,0.1466,0.1638) 0.1466
U2 (0.3753,0.4705,0.4705) 0.4546
U3 (0.1268,0.1466,0.1472) 0.1434
U4 (0.1901,0.2626,0.2906) 0.2552

Technical 
riskC2

(k=0.4384)

(0.2165,0.2560,0.3425) 0.3009

U5 (0.2068,0.2686,0.3133) 0.2658
U6 (0.1494,0.1720,0.1831) 0.1701
U7 (0.1434,0.1522,0.1634) 0.1256
U8 (0.3495,0.4194,0.4390) 0.4110

Production 
riskC3

(k=0.3542)

(0.1299,0.1455,0.2305) 0.0797
U9 (0.2783,0.3254,0.4362) 0.3361
U10 (0.4998,0.5355,0.5970) 0.5398
U11 (0.1230,0.1230,0.1297) 0.1241

Marketing 
riskC4

(k=0.2087)

(0.1690,0.2030,0.3445) 0.1256
U12 (0.5210,0.5210,0.6022) 0.5345
U13 (0.2484,0.2909,0.3766) 0.2981
U14 (0.1624,0.1624,0.1924) 0.1674

Managing 
RiskC5

(k=0.3542)

(0.2275,0.2875,0.4080) 0.2327
U15 (0.1280,0.1274,0.1274) 0.1263
U16 (0.4355,0.5547,0.5865) 0.5401
U17 (0.2733,0.3370,0.3800) 0.3336

Environment
al RisksC6
(k=0.2087)

(0.2125,0.2280,0.3035) 0.1697
U18 (0.4393,0.5505,0.5507) 0.5321
U19 (0.1485,0.1716,0.1757) 0.1684
U20 (0.2269,0.3074,0.3402) 0.2295

Table 7 The value of the interaction and Möbius capacity in sub-attributes

Attribute Set interaction Möbius 
capacity Attribute Set interaction Möbius 

capacity
{U1} 0.1467 0.0527 {U11} 0.1241 0.1064
{U2} 0.4546 0.3893 {U9, U10} (NI) -0.0480 -0.0480
{U3} 0.1435 0.1413 {U9, U11} (NI) 0.0177 0.0177
{U4} 0.2552 0.2552 {U10, U11} (NI) 0.0177 0.0177

{U1, U2} (NI) 0.1466 0.1466 {U12} 0.5345 0.5012
{U1, U3} (NI) 0.0205 0.0205 {U13} 0.2981 0.2648
{U1, U4} (NI) 0.0209 0.0209 {U14} 0.1674 0.1435
{U2, U3} (NI) 0.0205 0.0205 {U12, U13} (NI) 0.0426 0.0426
{U2, U4} (NI) 0.0365 0.0365 {U12, U14} (NI) 0.0239 0.0239
{U3, U4} (NI) 0.0205 0.0205 {U13, U14} (NI) 0.0239 0.0239

{U5} 0.2658 0.1528 {U15} 0.1263 0.0543
{U6} 0.1701 0.0882 {U16} 0.5401 0.4416
{U7} 0.1256 0.1198 {U17} 0.3336 0.2171
{U8} 0.4110 0.4110 {U15, U16} (LC) 0.0540 0.0540

{U5, U6} (NI) 0.1701 0.1701 (MC) 0.0900 0.0900
{U5, U7} (NI) 0.0179 0.0179 (MC) 0.1430 0.1430
{U5, U8} (NI) 0.0380 0.0380 {U18} 0.5321 0.5374
{U6, U7} (NI) 0.0180 0.0180 {U19} 0.1684 0.1249
{U6, U8} (NI) 0.0243 0.0243 {U20} 0.2295 0.1904
{U7, U8} (NI) 0.0180 0.0180 {U18, U19} (LC) 0.0342 0.0342

{U9} 0.3361 0.3512 {U18, U20} (LC) 0.0352 0.0352
{U10} 0.5398 0.0547 {U19, U20} (NI) 0.0766 0.0766

Table 8 The 2-addictive fuzzy measure of sub-attributes set
Attribute Set 2-additive FM Attribute Set 2-additive FM

{U1} 0.0527 {U5} 0.1528
{U2} 0.3893 {U6} 0.0882
{U3} 0.1413 {U7} 0.1198
{U4} 0.2552 {U8} 0.4110

{U1, U2} 0.5886 {U5, U6} 0.4111
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{U1, U3} 0.2145 {U5, U7} 0.2923
{U1, U4} 0.3288 {U5, U8} 0.6018
{U2, U3} 0.5511 {U6, U7} 0.2260
{U2, U4} 0.3444 {U6, U8} 0.5235
{U3, U4} 0.4170 {U7, U8} 0.5488

{U1, U2, U3} 0.7709 {U5, U6, U7} 0.5668
{U1, U2, U4} 0.9012 {U5, U6, U8} 0.8844
{U1, U3, U4} 0.5111 {U5, U7, U8} 0.7575
{U2, U3, U4} 0.8633 {U6, U7, U8} 0.6613

{U1, U2, U3, U4} 1 {U5, U6, U7, U8} 1
{U9} 0.3512 {U12} 0.5012
{U10} 0.5447 {U13} 0.2648
{U11} 0.1064 {U14} 0.1435

{U9,1U0} 0.8579 {U12, U13} 0.8086
{U9, U11} 0.4753 {U12, U14} 0.6686
{U10, U11} 0.7688 {U13, U14} 0.4322

{U9, U10, U11} 1 {U12, U13, U14} 1
{U15} 0.0543 {U18} 0.5374
{U16} 0.4416 {U19} 0.1249
{U17} 0.2171 {U20} 0.1904

{U15, U16} 0.5499 {U18, U19} 0.6965
{U15, U17} 0.3614 {U18, U20} 0.7630
{U16, U17} 0.8017 {U19, U20} 0.3929

{U15, U16, U17} 1 {U18, U19, U20} 1

Table 9 The 2-addictive fuzzy measure of parent attributes
attribute set 2-addictive FM attribute set 2-addictive FM

0 {C2, C3, C4} 0.4755
C1 0.0856 {C2, C3, C5} 0.5844
C2 0.2809 {C2, C3, C6} 0.5249
C3 0.0683 {C2, C4, C5} 0.6312
C4 0.1099 {C2, C4, C6} 0.5717
C5 0.2127 {C2, C5, C6} 0.6831
C6 0.1568 {C3, C4, C5} 0.4073

{C1, C2} 0.3718 {C3, C4, C6} 0.3514
{C1, C3} 0.1585 {C3, C5, C6} 0.4567
{C1, C4} 0.2008 {C4, C5, C6} 0.5035
{C1, C5} 0.3036 {C1, C2, C3, C4} 0.5763
{C1, C6} 0.2371 {C1, C2, C3, C5} 0.6852
{C2, C3} 0.3538 {C1, C2, C3, C6} 0.6151
{C2, C4} 0.398 {C1, C2, C4, C5} 0.7327
{C2, C5} 0.5069 {C1, C2, C4, C6} 0.6626
{C2, C6} 0.4474 {C1, C2, C5, C6} 0.774
{C3, C4} 0.1828 {C1, C3, C4, C5} 0.5018
{C3, C5} 0.2856 {C1, C3, C4, C6} 0.4416
{C3, C6} 0.2297 {C1, C3, C5, C6} 0.5469
{C4, C5} 0.3298 {C1, C4, C5, C6} 0.5944
{C4, C6} 0.2739 {C2, C3, C4, C5} 0.7133
{C5, C6} 0.3793 {C2, C3, C4, C6} 0.6538
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{C1, C2, C3} 0.4493 {C2, C3, C5, C6} 0.7652
{C1, C2, C4} 0.4942 {C2, C4, C5, C6} 0.8146
{C1, C2, C5} 0.6031 {C3, C4, C5, C6} 0.5856
{C1, C2, C6} 0.533 {C1, C2, C3, C4, C5} 0.8088
{C1, C3, C4} 0.2783 {C1, C2, C3, C4, C6} 0.7493
{C1, C3, C5} 0.382 {C1, C2, C3, C5, C6} 0.8067
{C1, C3, C6} 0.3155 {C1, C2, C4, C5, C6} 0.9108
{C1, C4, C5} 0.426 {C1, C3, C4, C5, C6} 0.6811
{C1, C4, C6} 0.3595 {C2, C3, C4, C5, C6} 0.9013
{C1, C5, C6} 0.4648 {C1, C2, C3, C4, C5, C6} 1


