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Abstract  
By using 11 influencing factors of water-cement ratio, silica-cement ratio, fly ash-cement ratio, sand-cement 

ratio, quartz powder-cement ratio, steel fiber admixture, PP fiber admixture , room temperature standard 

curing, hot water curing, dry heat curing and heating temperature as input variables, a BP neural network, 

Sparrow Search Algorithm Optimized Artificial Neural Network (SSA-BP) , Genetic Algorithm Optimized 

Artificial Neural Network (GA-BP) , and Support Vector Machine Regression (SVR) four models were 

established to predict the residual compressive strength of ultra-high performance concrete (UHPC) after high 

temperature damage. The results show that all four machine learning models can predict the residual 

compressive strength of UHPC after high temperature damage with high accuracy compared with the 

prediction results of existing empirical calculation models, and the error is basically controlled within 15%. The 

prediction results of the GA-BP model is the best, and its R2 reaches 0.949. 

Keywords: Ultra-high performance concrete; Residual compressive strength; High temperature damage; 

Machine learning. 
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I. INTRODUCTION  

With the acceleration of industrialization and urbanization, the causes of fire are becoming more and 

more complex, and the frequency of fire and the loss of life and property caused by fire are showing a rapid 

growth trend [1], and fire has become one of the main risks that threaten the safety of concrete structures [2]. 

The high temperatures generated by fires can lead to cement paste dehydration, aggregate decomposition, loss of 

concrete quality, deformation, loss of strength, and bursting of concrete [3-6]. How to assess the residual 

bearing capacity of damaged concrete structures after high temperature and adopt effective repair measures is an 

urgent problem. 

The prediction method of concrete compressive strength is mainly divided into two categories: (ⅰ) 

empirical formula method, according to the test results to summarize the influencing factors of compressive 

strength and its role in the law, the establishment of the compressive strength model, and then deduce the 

formula for calculating the compressive strength of concrete [7-10]; (ⅱ) machine learning algorithms, the 

formation of the prediction model of the compressive strength of concrete through the computer [11-13]. 

There are numerous factors affecting the compressive strength of UHPC [14-19]. The existing 

empirical calculation models of compressive strength after high-temperature damage are all obtained based on 

the respective test data regression fitting and other methods, which have limited applicability under the role of 

multi-factors, whereas the machine learning method is able to establish a nonlinear multi-mapping analysis 

under the role of multi-factors to discover the relationship between each raw material component of UHPC and 

its residual compressive strength after high-temperature damage, and more accurate results can be obtained with 

a small number of tests. 

In this paper, using the 214 sets of UHPC residual compressive strength test data after high-temperature 

damage collected in the previous period, with the help of Matlab software, we establish BP neural network, BP 

neural network optimized by Sparrow Search Algorithm (hereinafter referred to as SSA), BP neural network 

optimized by Genetic Algorithm (hereinafter referred to as GA), and Support Vector Machine Regression 

(hereinafter referred to as SVR) with four kinds of models to predict the residual compressive strength of UHPC 

after high-temperature damage and compare the prediction results of machine learning models with those based 

on test experience. (hereinafter referred to as SVR), and support vector machine regression (hereinafter referred 

to as SVR) four models to predict the residual compressive strength of UHPC after high-temperature damage, 

and to compare the prediction results of the machine learning model with those of the model based on the 

experimental empirical calculations, with a view to providing a reference for the effective application of the 

machine learning method to the prediction of compressive strength after high-temperature damage of UHPC. 
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II. DATA SOURCES AND PROCESSING 

Based on the experience, 11 parameters such as water-cement ratio, silica fume/cement, fly ash/cement, 

quartz sand/cement, quartz powder/cement, steel fiber dosage, PP fiber dosage, curing method, and heating 

temperature are hypothesized to have a strong influence on the residual compressive strength of UHPC after 

high temperature damage. For this purpose, experimental data from national and international literature [3, 9, 

14-17, 20-24] were collected to form 214 sample data sets. 

Due to the large number of variables entered into the established prediction model, in order to verify 

the reliability of the sample data, it is necessary to carry out a multicollinearity test between the input variables 

to eliminate the factors with too high correlation [25]. In this paper, the Spearman correlation coefficient method 

is used for the test. It is generally believed that when the absolute value of the correlation coefficient of two 

input variables is ≥0.8, there is a certain covariance between the two variables. The correlation coefficients of all 

input variables were calculated and plotted in a heat map, as shown in Figure 1. In the graph, W/B is water-

binder ratio, SF/C is silica fume/cement, FA/C is fly ash/cement, S/C is quartz sand/cement, Qu/C is quartz 

powder/cement, S-F is steel fiber dosage, PP-F is PP fiber dosage, NW is ambient conditioning, HW is hot-

water conditioning, DA is dry-heat conditioning, and T is temperature. 

As can be seen in Figure 1, the correlation coefficient between standard maintenance NW and hot 

water maintenance HW is 0.94, but since the maintenance method is a mandatory option for consideration, it is 

not censored, and the correlation results between the rest of the input variables are in line with the modeling 

requirements. 
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Figure1: Spearman's correlation coefficient between the characteristic variables 

 

In order to train the model more conveniently and scientifically, and at the same time to eliminate the 

influence of variable distribution of the sample data set, 172 groups out of 214 sets of experimental data were 

randomly selected as the training set and the remaining 42 groups were used as the test set using the randperm 

function that comes with the Matlab software. 

 

III. EXISTING RESIDUAL COMPRESSIVE STRENGTH CALCULATION MODEL 

The existing residual compressive strength prediction of UHPC after high-temperature damage is 

mainly based on tests, and the expressions of the computational model functions are determined from the test 

data by regression fitting, so as to obtain the corresponding computational models of residual compressive 

strength. In order to further verify the applicability of the empirical calculation model under the effect of 

multiple factors, four first-order or multi-order combinations of the residual compressive strength empirical 

calculation models are selected in this paper, which are the empirical calculation models proposed by KAHANJI 

et al [9], GONG et al [10], ZHENG et al [33], and XIAO et al [34]. Figure 2 shows the scatter fit of the 

prediction results of each empirical computational model. 

As can be seen from Figure 2, the model proposed by Gong et al [10] has the highest prediction 

accuracy, with an RMSE of 17.675, an MAE of 12.137, and an R
2
 of 0.740, but none of them satisfies the 

requirement that the coefficient of determination of the engineering practice, R
2
, is greater than 0.85. The 

computational models all showed high dispersion, indicating that after high-temperature damage, the residual 

compressive strength of UHPC under the effect of multiple factors is highly nonlinear, and the applicability of 

the empirical computational model under the effect of multiple factors is limited. 
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(a) KAHANJI model [9] 
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（b）GONG模型[10] 
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(d) XIAO model [34] 

 

Figure2: Prediction results of the empirical calculation mode 

 

IV. MACHINE LEARNING MODEL  

4.1 BP neural network model 

BP neural network in the training process, will first give the model random initial weights and 

thresholds, through the error reverse adjustment of the weights and thresholds of the neural network, until it 

reaches the training error requirements, the output of the trained model predictions [26]. Under a single hidden 

layer, as long as there are enough hidden layer nodes, the BP neural network has a strong nonlinear mapping 

ability, under a single hidden layer can be fitted to any nonlinear function [27], so this paper adopts a single 

hidden layer structure. 

 

4.2 SSA-BP model 

SSA model is a population intelligence optimization algorithm inspired by sparrow's foraging behavior 

and anti-predator behavior [28], which has high convergence and strong local search ability, and achieves 

complementarity with BP neural network which is easy to fall into local optimal solution, optimizes the weights 

and thresholds of BP neural network, and improves the global optimization performance of the model. 

 

4.3 GA-BP model 

GA model is a stochastic global search and optimization method developed to mimic the mechanism of 

biological evolution in nature, which automatically acquires and accumulates knowledge during the search 

process and adapts itself to the search process in order to find the best solution. By utilizing the parallelizability 

of GA algorithm, it can facilitate distributed computing, improve the robustness of the model, and increase the 

solution speed. Meanwhile, the GA algorithm has outstanding heuristic search advantages in multi-parameter 

optimization [29-30]. Therefore, the GA algorithm is used to optimize the BP neural network to predict the 

output under multivariate inputs. 

4.4 SVR model 

SVR model is a penalized learning algorithm by Vapnik et al [32] that introduces an insensitive loss 

function based on support vector machine classification to solve the regression fitting problem, and its basic idea 

is to map the input sample variables into a high-dimensional feature space, and search for an optimal hyperplane 

so that all the training samples are closest to this hyperplane. 
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V. MACHINE LEARNING MODEL PREDICTS RESULTS  

The results of the machine learning model for predicting the compressive strength of UHPC after high 

temperature damage are shown in Figure 9 below. 

 As can be seen from the error distribution graph, the error distribution curves of the training set of each 

machine learning model are in line with the characteristics of normal distribution, indicating that the models can 

accurately analyze the effect of the coupling of multiple input variables on the residual compressive strength of 

UHPC after high-temperature damage during the training process. The prediction error is basically controlled 

within 15%. 

 Combined with the error distribution graph and the scatter fitting graph, it can be seen that the BP 

neural network model, although it has a high prediction accuracy during the training process, there are 

individual cases of large discrete errors. 

 Compared with BP neural networks, SSA and GA optimization algorithms significantly improve the 

prediction performance of BP neural networks and make up for the shortcomings of BP neural network models 

in global optimization. 

 Taken together, the optimal prediction model is the GA-BP model, the error distribution of the model 

approximates the standard normal distribution, and its evaluation indexes are 7.834 for RMSE, 6.408 for MAE, 

and 0.949 for R
2
. 

  
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(a) Error distribution of the training set of the BP 

neural network model 
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(b) Predicted and experimental values of BP 

neural network models 
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(c) Error distribution of SSA-BP model training 

set 
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(d) Predicted and experimental values of the SSA-

BP model 
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(e) Distribution of errors in the training set of the 

GA-BP model 
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(f) Predicted and experimental values of the GA-

BP model 
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(g) Error distribution of the SVR model training 

set 
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(i) Predicted versus experimental values of the 

SVR model 

Figure 9: Prediction results of different machine learning models 

 

VI. CONCLUSION 

In this paper, four models, namely, BP neural network, GA-BP, SSA-BP, and SVR model, were used 

to predict the residual compressive strength of UHPC after high-temperature damage, and in general, the 

prediction results of the experimental empirical calculation model were not ideal, presenting a large degree of 

dispersion; whereas, the machine learning model predicted a high degree of convergence, and the percentage of 

the prediction error was within 15%, and R2 were all greater than 0.85, and the prediction values were in close 

proximity with the experimental values are closer; among them, the GA-BP model has the best prediction 

results, and the error distribution is mainly concentrated in [-10%, 10%]. Therefore, the GA-BP model can 

predict the residual compressive strength of UHPC after high-temperature damage more accurately, which is 

suitable for the design and optimization of UHPC tests, reducing the workload of the test, and can provide a 

reference for the study of the influence of each raw material component of UHPC on the compressive strength 

after high-temperature damage. 
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