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Abstract 

With the rapid development of deep learning technology, three-dimensional point cloud semantic segmentation 

has been widely applied in indoor scenes, robotic arm grasping, autonomous driving, and other fields. As one 

of the key technologies in three-dimensional scene understanding, three-dimensional point cloud segmentation 

has attracted extensive attention from researchers and has significant research significance and broad 

application prospects. Based on this, this paper provides a detailed review of deep learning-based three- 

dimensional point cloud segmentation methods and the latest research status. From the perspective of deep 

learning, three-dimensional point cloud semantic segmentation methods can be divided into direct and indirect 

semantic segmentation methods. This paper subdivides and analyzes the research contents of each method and 

summarizes their basic ideas and advantages and disadvantages. At the same time, this paper summarizes and 

analyzes the current mainstream public datasets and evaluation metrics. Finally, it outlines the future 

development direction of three-dimensional point cloud semantic segmentation technology. 
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I. INTRODUCTION 

In recent years, with the continuous improvement of point cloud acquisition devices such as LiDAR
[1-

 
4]

and RGB-D depth cameras
[5,6]

, the cost of obtaining data has gradually decreased, making the application of 

three-dimensional point clouds increasingly comprehensive. In the field of computer vision, research on three- 

dimensional point clouds has attracted widespread attention. The main task of three-dimensional point cloud 

semantic segmentation is the process of perceiving, analyzing, and ultimately predicting the semantic categories 

for each three-dimensional point cloud data. Three-dimensional point cloud semantic segmentation technology 

is mainly applied in various fields such as robotic arm grasping in the mechanical industry, obstacle avoidance 

for robots in indoor scenes
[7-10]

, vehicle road perception and segmentation recognition in the field of 

autonomous driving
[3,4,11-13]

, and urban building environment perception in satellite remote sensing fields
[14]

. 

Compared to two- dimensional image data, three-dimensional point clouds not only contain the real geometric 

and shape features of objects but also reduce the influence of changes in lighting intensity and occlusion of 

viewpoints that exist in two- dimensional images. However, compared to two-dimensional image data, current 

three-dimensional point cloud data exhibits characteristics such as differences in point cloud distribution 

density, unorderedness of points, invariance after rotation or translation, and irregularity, posing greater 

challenges in semantic segmentation. Among them, differences in point cloud density may lead to some areas 

being densely populated while others are sparse, posing challenges for subsequent feature extraction and 

semantic segmentation. Additionally, the unorderedness of point clouds and their invariance after rotation or 

translation result in different point cloud representations of the same object, requiring algorithms to understand 

the invariance of objects after rotation or translation and segment them correctly. Furthermore, the irregularity 

of three-dimensional point clouds increases the complexity of processing and analysis, requiring algorithms to 

adapt to the irregularities between different point clouds. 

Currently, three-dimensional point cloud semantic segmentation mainly employs two methods
[15,16]

: 

traditional machine learning and deep learning. Traditional machine learning performs well when dealing with 

small-scale data. However, three-dimensional point cloud data has characteristics such as high feature 

dimensionality and dense point clouds. Traditional machine learning methods for three-dimensional point cloud 

semantic segmentation suffer from several drawbacks, including manual feature extraction, loss of local 

information, poor model generalization ability, and reliance on domain knowledge. These limitations restrict 

their application effectiveness and performance in complex scenarios.In contrast, deep learning demonstrates 

powerful computational and training capabilities in three-dimensional point cloud semantic segmentation. It can 
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fully learn feature representations, is sensitive to local information, exhibits good generalization ability, and 

reduces manual intervention. These advantages enable deep learning to better cope with the complex point 

cloud data structure and semantic information, providing a more efficient and accurate solution for three-

dimensional scene understanding. Therefore, this paper will analyze deep learning-based methods for three-

dimensional point cloud semantic segmentation. 

This paper extends and improves upon existing point cloud segmentation reviews. It organizes recent 

advanced research methods on point cloud semantic segmentation and categorizes them into two main types based 

on how they handle three-dimensional point cloud data: indirect semantic segmentation methods and direct 

semantic segmentation methods. Additionally, it provides an analysis of the latest public datasets and 

commonly used evaluation metrics. Finally, it offers an in-depth outlook on the future research directions in the 

field of three- dimensional point cloud semantic segmentation for the reference of relevant researchers. 

 

II. DATASETS AND EVALUATION METRICS 

In deep learning algorithms, selecting appropriate training datasets is crucial because the quality and 

diversity of the datasets directly impact the model's generalization ability and practical application 

effectiveness. To ensure maximized model performance and generalization, it's essential to choose datasets that 

are representative, diverse, and well-annotated so that the network can fully learn and adapt to different 

scenarios. Establishing effective and diverse datasets is of significant importance for evaluating the performance 

of different segmentation methods, the adaptability and robustness of evaluation methods, as well as advancing 

theoretical research and promoting the emergence of new methods. 

 

2.1 DATASETS 

Table 1 lists six commonly used datasets, including S3DIS
[17]

, Semantic3D
[18]

, SemanticKITTI
[19]

, and 

ShapeNetpart
[20]

. These datasets have become important resources widely used by researchers in the field of 

three- dimensional point cloud semantic segmentation, providing significant support for research in this area. 

 

Tabel 1: Datasets Comparison 
Datasets Public Year Collection equipment Point cloud scene Application scenarios 

Semantic3D[18]↓ 2017 Laser Scanner Semantic segmentation of outdoor scenes Semantic segmentation 

S3DIS[17]↓ 2016 Depth camera Semantic segmentation of indoor scenes Semantic segmentation 

Shapenet[20]↑ 2016 Artificial synthesis Object model component segmentation Component segmentation 

SemanticKITTI[19]↑ 2019 Camera/LiDAR Semantic segmentation of outdoor scenes Semantic segmentation 

STPLS3D[21]↑ 2022 Camera/LiDAR Semantic segmentation of outdoor scenes Semantic segmentation 

 

S3DIS
[17]

 dataset is a large-scale three-dimensional point cloud dataset for indoor scenes, created by 

the Stanford University Computer Vision Lab, as shown in Figure 1. This dataset, used for indoor scenes, 

includes spatial geometric coordinate information and color information, and is widely applied in various tasks 

and applications related to indoor environments in the mechanical industry field. The S3DIS dataset collects six 

large indoor scenes, including three-dimensional point cloud data and corresponding semantic labels for places 

such as offices, conference rooms, and libraries, including categories such as floors, walls, and furniture. The 

S3DIS dataset has become one of the widely used benchmark datasets for indoor three-dimensional point cloud 

semantic segmentation. 

The Semantic3D
[18]

 dataset is created by Technische Universität München (TUM) and is a large -scale 

three-dimensional point cloud dataset designed specifically for studying outdoor environmental scenes. This 

dataset collects rich outdoor three-dimensional point cloud data covering various terrains and scenes such as 

urban streets, parks, and buildings. Each point cloud contains spatial geometric coordinates and color information, 

along with corresponding semantic labels such as ground, buildings, and trees. The Semantic3D dataset has 

become one of the widely used benchmark datasets for three-dimensional point cloud semantic segmentation in 

outdoor environments. 

The ShapeNetPart
[20]

 dataset contains 55 classes totaling 51,300 3D models and is a richly annotated 

dataset. ShapeNetPart is a subset of the ShapeNet dataset, jointly developed by Stanford University in the USA 

and the Toyota Technological Institute at Chicago. It includes 16 object categories with 16,881 shapes, 31,693 

grids, and a total of 50 component categories. 
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Figure 1: Schematic diagram of S3DIS
[17]

 dataset 

 

The SemanticKITTI
[18]

 dataset is a large-scale three-dimensional point cloud dataset created by the 

Karlsruhe Institute of Technology (KIT) for autonomous driving scenarios. As an extension of the KITTI dataset, 

SemanticKITTI provides more detailed semantic annotation information. It contains a large amount of LiDAR 

point cloud data from driving cars, covering various terrains and scenes in cities and suburbs. Each point cloud 

contains rich geometric and color information, along with detailed semantic labels such as vehicles, pedestrians, 

roads, and buildings. SemanticKITTI has become one of the widely used benchmark datasets in autonomous 

driving technology and practical applications. 

 

Figure 2: Schematic diagram of STPLS3D
[21]

 dataset 

 

The STPLS3D
[21]

 dataset is a large-scale three-dimensional point cloud dataset designed for outdoor 

urban scenes, as shown in Figure 2. This dataset contains vast urban scenes with over 16 square kilometers of 

urban data and up to 18 fine-grained semantic categories, including ground, walls, vegetation, vehicles, and 

more. The application scope of the STPLS3D dataset is broader and can be used in research and applications 

such as urban building perception, traffic management, urban building monitoring, and more. 

 

2.2 EVALUATING INDICATOR 

Three-dimensional point cloud semantic segmentation evaluation metrics are used to compare the 

performance of different segmentation algorithms. These metrics typically include Overall Accuracy (OA), 

Mean Intersection over Union (mIoU), Mean Average Precision (mAP), the number of parameters, and Floating 

Point Operations per Second (FLOPs). The specific formulas are shown in Table 2. Where: N represents the 

total number of samples, C represents the number of segmentation categories, TP (True Positive points) 

represents the portion where the true label and the predicted label overlap, which is the number of points 

correctly predicted as true by the model. FN (False Negative points) represents the number of true value points 

not predicted by the model. FP (False Positive points) represents the number of points misjudged by the model as 

true, i.e., the portion not overlapping with the true label. 
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Table 2: Common Evaluation Metrics for Point Cloud Segmentation 

 
 

In the task of three-dimensional point cloud semantic segmentation, the mean Intersection over Union 

(MIoU) directly reflects the accuracy of the three-dimensional point cloud segmentation. The Intersection over 

Union (IoU) represents the accuracy of a specific category prediction in three-dimensional point cloud 

segmentation, which is the ratio of the intersection to the union between the predicted segmentation region and 

the ground truth label for that category. Overall Accuracy (OA) refers to the average prediction accuracy of the 

network model across all semantic segmentation categories, which is the proportion of correctly predicted point 

clouds to the total number of point clouds. Overall Class Accuracy (OACC) refers to the average prediction 

accuracy for each semantic segmentation category, which is the average of the proportion of correctly predicted 

point clouds in each category to the total number of point clouds in that category. 

 

III. RESEARCH METHODS FOR 3D POINT CLOUD SEMANTIC SEGMENTATION 

With the development of deep learning technology, significant progress has been made in the field of 

point cloud semantic segmentation. In recent years, researchers have proposed numerous deep learning-based 

segmentation models to address the challenges of point cloud data. Compared to traditional algorithms, these 

models have shown significant improvements in performance, reaching higher standards. In this paper, based on 

the processing methods of point cloud data, we categorize deep learning-based three-dimensional point cloud 

semantic segmentation methods into two types: indirect and direct semantic segmentation methods. 

 

3.1 INDIRECT SEMANTIC SEGMENTATION METHOD 

 

3.1.1 Research Methods Based On Multi-View Approaches 

In the field of point cloud semantic segmentation, the multi-view approach typically involves 

projecting three-dimensional point clouds into two-dimensional images. Traditional 2D segmentation methods 

are then employed to segment the data, and the results are subsequently projected back into the 3D point cloud, 

achieving the segmentation of point clouds. Thanks to the successful application of Convolutional Neural 

Network (CNN) on 2D images, Su, Hang
[7]

 et al. proposed a multi-view feature extraction point cloud semantic 

segmentation network, MV-CNN. This network transforms three-dimensional objects into several two-

dimensional images from different viewpoints. It aggregates and completes the semantic segmentation task 

based on the feature information at each position. Zeid, K.A
[22]

. et al. applied the self-supervised framework 

data2vec to point cloud segmentation, proposing the Point2Vec network. This network addresses the problems 

of missing positional information and severe occlusions. However, the projection process may lead to 

information loss, and it cannot fully utilize the sparsity of the three-dimensional point cloud, thus unable to 

learn geometric information.To address the issue of mapping between the two-dimensional pixels learned in 

large scenes and the 3D point cloud, requiring grid reconstruction to recover occlusions, Damien Robert
[23]

 et 

al. proposed an end-to-end trainable aggregation network based on multi-view, named DeepViewAgg. This 

model merges the features in 2D images captured from arbitrary positions by utilizing the features of the three-

dimensional point cloud. 
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Bird's Eye View
[6]

 (BEV) has been widely used in the field of autonomous driving. However, in the 

process of extracting and fusing two-dimensional image data captured by multiple cameras and finally 

projecting them onto the top-view grid, there are issues related to geometric feature mapping errors. Direct dense 

mapping using attention mechanisms would lead to wastage of significant computational resources. Florent 

Bartoccioni
[24]

 et al. proposed a semantic segmentation network called LaRa (Latents and Rays) based on the 

Cross-Attention mechanism. LaRa utilizes the Cross-Attention mechanism to aggregate features from multiple 

two-dimensional image sensors into a compact set. It also employs the Self-Attention mechanism to learn 

semantic information from the feature representation set.Currently, most point cloud semantic segmentation 

methods adopt the K- Nearest Neighbors (KNN) algorithm
[25]

. However, its computational complexity also 

affects the network's computational efficiency. Chuanyu Luo
[5]

 et al. proposed an end-to-end architecture for the 

multi-view per-point network, MVP-Net (Multiple View Pointwise). MVP-Net can directly perform inference using 

large-scale outdoor point clouds without the need for K-Nearest Neighbors (KNN) algorithms or other complex 

preprocessing operations, reducing wastage of computational resources. However, issues such as image occlusion 

and low image quality may affect the accuracy of semantic segmentation, requiring the introduction of additional 

post-processing to address such problems. 

Although using the multi-view approach avoids the irregularity of point clouds, it still has the 

following drawbacks: Rendering the original point cloud into two-dimensional images results in a significant 

waste of computational resources, making real-time performance unattainable. In current autonomous driving 

applications, using the multi-view method to process data from multiple viewpoints requires a considerable 

amount of additional computational resources, unable to meet the system's real-time performance requirements. 

Utilizing the multi-view approach cannot fully exploit the sparsity of the three-dimensional point cloud, resulting 

in the loss of depth information and overall geometric features of the point cloud. Different view selections can 

significantly affect the network's recognition performance. When merging occluded or blurry image information 

from different viewpoints, the network needs to introduce additional post-processing to improve the accuracy of 

the network segmentation results. 

 

3.1.2 Research On Voxel-Based Methods 

Voxel-based methods for point cloud semantic segmentation typically involve preprocessing point 

clouds into dense or sparse three-dimensional voxels. This approach allows the application of traditional 2D 

image processing techniques. After learning the features, these are devoxelized and returned to the point cloud to 

achieve three-dimensional semantic segmentation. Voxel-based methods reduce the impact of holes and missing 

parts in point clouds during the voxelization process, particularly when dealing with poor quality or heavily 

occluded point clouds. Additionally, voxel-based methods offer the advantage of interpretability. 

Iro Armeni
[26]

 et al., based on the 3D Fully Convolutional Neural Network (3D-FCNN), applied the 

Fully Connected Conditional Random Field (FC-CRF) to maintain spatial consistency and proposed the 

SegCloud network for 3D point cloud semantic segmentation. The network achieves point cloud semantic 

segmentation through trilinear interpolation.Truc Le
[27]

 et al. proposed a method using the embedded voxel grid, 

PointGrid, which avoids feature loss by uniformly quantizing and hierarchically extracting global information at 

different scales. However, increasing the resolution during the voxelization process leads to a significant 

increase in computational complexity.In response to the issue of low voxelization resolution due to limited 

computational resources, Haotian Tang
[28]

 et al. introduced a lightweight sparse point voxel convolution module 

called SPVConv and built the SPVCNN network upon it. This innovation addresses the problem of low 

resolution brought by sparse convolution and overcomes the challenge of applying three-dimensional voxel 

convolution to large-scale scenes. 

Yuenan Hou
[29]

 et al. supplemented sparse supervised signal features using voxel distillation and 

proposed the PVKD network. The network samples low-frequency categories and distant objects by perceiving 

sampling difficulty, but it performs poorly in local feature processing.Xinge Zhu
[30]

 et al. introduced a novel 

point cloud segmentation framework, Cylindrical3D. It achieves semantic segmentation by segmenting scenes 

cylindrically and using a symmetric three-dimensional convolution network, addressing the irregularity and 

density variation of outdoor large scenes. 

While using voxel-based methods can address the issues of unordered point clouds and differences in 

point cloud distribution, they also have the following drawbacks: Currently, commonly used voxel-based 

methods encounter high runtime memory consumption, high computational costs, and large storage space issues 

when dealing with smaller voxel sizes. Many detailed features of small-sized object point clouds cannot be 

adequately described during the conversion to discrete voxel representations, resulting in the loss of local 

features and the inability to retain the original point cloud information. Selecting a voxel size that is too small in 

the network will lead to a waste of computational resources due to a large number of empty voxels. Conversely, 

choosing a voxel size that is too large will result in the loss of local features and poorer segmentation results. 

Furthermore, the usage scenarios become too narrow. 
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3.2 DIRECT SEMANTIC SEGMENTATION METHODS 

In the task of three-dimensional point cloud semantic segmentation, methods based on multi-view and 

voxelization face some challenges, stemming from the limitations of the algorithms themselves and the 

unstructured and unordered nature of point cloud data. These methods have certain limitations in segmentation 

accuracy and practical application range, posing challenges to the task of three-dimensional point cloud 

semantic segmentation. Direct semantic segmentation methods extract feature information directly from point 

cloud data, without the need for voxelization or multi-view transformation, retaining the inherent information of 

the original points for point-level semantic prediction. Therefore, direct processing of irregular point clouds is 

currently the mainstream method for three-dimensional point cloud semantic segmentation. 

 

3.2.1 Research On Methods Based On Multilayer Perceptron 

In recent years, researchers have abandoned the complex preprocessing steps of the above two 

methods to fully utilize the geometric spatial characteristics of point cloud data, while also considering lower 

computational complexity and memory requirements. Consequently, they have adopted direct point cloud-based 

methods for end-to-end learning of the point cloud. Addressing the shortcomings of the multi-view and voxel-

based methods, Charles R. Qi
[31]

 et al. first proposed the PointNet network, using unordered raw point clouds as 

input, thereby avoiding complex preprocessing. They then mapped features to a high-dimensional space to learn 

the features of each point. However, the PointNet network only considers global feature information and ignores 

local structural information between points. This led to a problem of not using the spatial structure information 

of points and resulted in the loss of local features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: PointNet
[31]

 Network Architecture 

 

 

To address the issue of local feature loss in the PointNet network, Charles R. Qi
[32]

et al. proposed 

the PointNet++ network. Based on the original network, it drew inspiration from the concept of the multi-

layer perception field proposed by Krizhevsky
[33]

 et al. They used the farthest point sampling (FPS) 

algorithm to iteratively extract features from the local neighborhood of the point cloud. The 3DMAX-Net 

network proposed by Ma, Yanxin
[34]

 et al. similarly adopted a multi-scale approach, effectively capturing local 

and global contextual information in the 3D point cloud. The network proposed a fusion of multi-scale 

convolutional layers and a cross- attention module, which can adaptively focus on different spatial resolution 

information areas according to the point cloud of different scenarios, achieving accurate semantic segmentation 

of complex 3D scenes. EiyueWang
[35]

 et al. proposed a segmentation network, SGPN, that uses raw point clouds 

as data input. The network predicts the point cloud through a separate similarity matrix module, thus providing 

accurate prediction results and grouping suggestions for each point. However, the similarity matrix in the 

SGPN network grows quadratically with the number of points. While this method saves memory space 

compared to voxel-based methods, it is not suitable for large-scale point cloud data. To address the various 

issues with SGPN, QingyongHu
[1]

 et al. proposed an efficient and lightweight RandLA-Net network structure, 

depending on different application scenarios. The network proposed a novel downsampling strategy, Random 

Sampling, and a local feature aggregation module, avoiding problems such as local feature loss and low 

computational efficiency while maintaining real-time performance. However, this method does not show 

obvious effects on boundary segmentation. Addressing the above issues, TiangeXiang
[36]

 et al. proposed a 

method for aggregating assumed curves in point clouds. This method is based on the classic segmentation 

network framework ResNet proposed by Tan, MX
[37]

, which adds a curve grouping module and embeds it into 
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the CurveNet network. By guiding and grouping the connection points in the point cloud in sequence and then 

aggregating them back to enhance their point-by-point features, the segmentation effect is improved. Currently, 

most methods used for feature aggregation widely adopt the max-pooling function, which results in the loss of 

granular information. 

 

 

Figure 4: PointNet++
[32]

 Network Architecture 

 

3.2.2 Research On Point Convolution-Based Methods 

In addition to using the point-by-point MLP approach to handle point cloud data, some researchers are 

also exploring the use of point convolution methods for processing point-based data. Due to the unordered and 

irregular nature of 3D point cloud data, traditional 2D image grid convolutions are not suitable. The 

convolution- based feature extraction method designs specific 3D convolution kernels and then utilizes 

convolutional operations to extract features from the point cloud. Wenxuan Wu
[38]

 et al. proposed a convolution 

operator, PointConv, which effectively calculates the weight function on 3D point cloud data. Additionally, they 

extended it to a deconvolution operator, PointDeconv, combined with a linear interpolation algorithm, resulting 

in better segmentation results. However, PointConv does not consider rigid transformations such as rotation and 

translation during the convolution process. To address this issue, Yongcheng Liu
[39]

 et al. proposed the Relation-

ShapeCNN, a network that infers implicit 3D shape information from the relationships between points, achieving 

permutation invariance and robustness to rigid transformations. Hugues Thomas
[40]

 et al. introduced a kernel point 

convolution (KPConv) network for point cloud processing. Unlike traditional grid convolutions, KPConv is 

composed of convolutional kernels with weights, where each kernel point convolution has a corresponding 

distance influence. However, the KPConv network increases the complexity of the entire calculation and can 

cause overfitting for simple classification and segmentation tasks. To address the problems with KPConv, 

Kangcheng Liu
[14]

 et al. designed a novel noise and outlier filtering method to promote subsequent advanced 

tasks. They proposed a deep convolutional neural network, FG-Net, which utilizes correlation feature mining 

and geometric perception modeling based on deformable convolutions, making full use of local feature 

relationships. They also proposed inverse density sampling operations and feature-based residual learning 

strategies to save computational costs and memory consumption, respectively. Wu, Wenxuan
[41]

 et al. introduced 

the PAConv network, which processes point-based data by effectively calculating the weight function on 3D 

point cloud data using convolutional operators. By designing specific 3D convolution kernels and using 

convolution operations to extract features from the point cloud, it improves the accuracy of point cloud 

segmentation. 

 

3.2.3 Research On Attention Mechanism-Based Methods 

Inspired by the significant success of the Transformer proposed by Vaswani, A.
[42]

 et al. in the field of 

Natural Language Processing (NLP), many researchers have recently applied the Transformer to direct point- 

based semantic segmentation of point clouds. Guo, M. H.
[43]

 et al. proposed a Point Cloud Transformer (PCT), 

suitable for irregular and unstructured point cloud learning networks. The adopted offset attention and 

normalization mechanism contribute to the network. Zhao, H. S.
[44]

 et al. introduced the Point Transformer 

network, which utilizes a subtracive vector attention mechanism. In each layer of the downsampling process, a 

max-pooling layer is used to aggregate information, but a large amount of non-maximum point information is 

lost during the layer-by-layer downsampling process. To address the issues related to feature loss caused by the 

max- pooling layer, KevinTirta Wijaya
[45]

 et al. proposed a new point cloud feature learning network named Point 

Stack. The network adopts the concept of multi-resolution feature learning and learnable pooling layers, 
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avoiding the complete ignorance of non-maximum point features after using max-pooling for feature 

aggregation. 

 

Simultaneously, the network uses multi-resolution feature learning, ensuring that the final point cloud 

features contain both high semantic and high-resolution information. Renrui Zhang
[46]

 et al. proposed a dual-

scale point cloud segmentation network, DSPoint, based on high-frequency fusion. Global features are extracted 

using the voxel method and local features are extracted through point convolution. The network pays more attention 

to high- frequency information, but loses some low-frequency information. Two-dimensional images contain 

color and texture features that can complement the three-dimensional point cloud features. Youquan Liu
[4]

 et al. 

proposed a laser radar point cloud semantic segmentation network named UniSeg, which uses features from both 

two- dimensional images and three-dimensional point clouds, and integrates them using a mechanism called the 

Learnable Cross-Modal Association (LMA). The UniSeg network effectively utilizes the semantic information of 

two-dimensional images to achieve more accurate segmentation results. 

 

 

Figure 5: Point Transformer
[44]

 Network Architecture 

 

Influenced by the significant impact of the Swin Transformer series sliding window networks in the 

image domain 
[47,48]

, Lai, Xin et al. proposed the Stratified Transformer network, which introduces a grid-based 

local attention mechanism to operate Transformer modules in a series of sliding windows, solving the memory 

consumption issue. Park, Jinyoung
[49]

 et al. introduced a self-positioning Transformer network, 

SPoTransformer, to reduce computational complexity and better acquire local neighborhood features. Zhou J et 

al. proposed the Point Cloud Size-Aware Transformer, which can provide different effective receptive fields for 

objects of different sizes. Zhuoxu Huang
[50]

 et al. utilized the Local Context Propagation (LCP) module to 

propose the LCPFormer network, which achieves semantic segmentation by weighting the overlapping points in 

adjacent local regions to share point features. Kunyu Peng
[3]

 et al. proposed a Multi-Attention Semantic 

Segmentation (MASS) network model. The network framework converts the input three-dimensional point 

cloud into cylindrical features and occupancy features around the vehicle. Through a key-point-driven graph 

attention mechanism, attention from the spatial input vector embedding of the LSTM (Long Short-Term Memory), 

and based on the cylindrical features, segmentation masks are obtained to achieve semantic segmentation. 

Transformers, with their ability to capture long-range dependencies, have become the preferred choice for most 

direct point-based point cloud semantic segmentation methods. 
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IV. FUTURE IMPROVEMENTS 

4.1 FUTURE IMPROVEMENT STRATEGIES 

The existing methods have made significant progress in improving the accuracy of semantic segmentation. 

However, there are still some limitations, including but not limited to the insufficient dataset, algorithm 

complexity, and real-time processing. Therefore, future research on 3D point cloud semantic segmentation 

algorithms will focus on multiple feature fusion, multimodal fusion, real-time processing and lightweighting, as 

well as self-supervised learning and reinforcement learning. Multiple feature fusion and multimodal fusion will 

utilize information from different types of data to enhance the robustness and accuracy of the algorithm. 

Research on real-time processing and lightweighting will optimize algorithm structure and model design to 

meet the requirements for speed and resource consumption. Self-supervised learning and reinforcement learning 

will provide new avenues for unsupervised learning and intelligent decision-making, thus promoting further 

application and development of 3D point cloud semantic segmentation technology in fields such as autonomous 

driving and intelligent robotics. 

 

4.2 EVALUATION METRICS 

i. Research on Three-Dimensional Point Cloud Semantic Segmentation Algorithms with Multiple 

Feature Fusion 

In future research, more attention will be paid to effectively utilizing and integrating various types of data. 

Among these, multi-feature data fusion is an important direction, including utilizing the spatial geometric 

features, color information of point cloud data, as well as other data obtained from different sensors, such as image 

information, normal vector information, etc. By comprehensively using these different types of data, the 

robustness and accuracy of semantic segmentation algorithms can be improved, further expanding their 

applicability and effectiveness in practical applications. 

ii. Research on Three-Dimensional Point Cloud Semantic Segmentation Algorithms with Multimodal 

Fusion In future research, more attention will be given to multimodal data fusion, which can be carried out at 

multiple levels, including feature fusion, information fusion, and model fusion. In terms of feature fusion, the 

feature information obtained from different sensors can be combined to form a more comprehensive and rich 

feature representation. From the perspective of information fusion, the semantic information of different types 

of data can be cross-verified and complemented to improve the consistency and accuracy of the semantic 

segmentation results. From the viewpoint of model fusion, an end-to-end multimodal semantic segmentation 

model can be designed to integrate information from different data sources into a unified framework, achieving 

more comprehensive and accurate segmentation results. Research on multimodal fusion of three-dimensional 

point cloud semantic segmentation algorithms helps to address the challenges encountered in practical 

applications, promoting the widespread application of semantic segmentation technology in fields such as 

autonomous driving and intelligent robotics. 

 

iii. Research on Real-time and Lightweight Techniques 

Currently, although the proposed semantic segmentation network models have made significant progress in 

accuracy, the increase in complexity and processing speed remains a major challenge. Especially in applications 

such as autonomous driving, pedestrian detection, and environmental perception, the demand for real-time 

semantic segmentation is increasing. Additionally, as the application scenarios of three-dimensional point 

clouds in industries such as mechanical engineering continue to expand, higher requirements and challenges are 

posed for the real-time and efficiency of point cloud semantic segmentation algorithms. Therefore, future 

research directions will focus on algorithmic improvements in real-time and lightweight techniques to meet the 

demands of different application scenarios. 

Specific methods to address this challenge include the study of real-time and lightweight algorithms. To enhance 

real-time processing, the algorithm's response speed can be improved by optimizing network structure, 

designing lightweight models, or using hardware acceleration. For example, lightweight network structures can 

be adopted, reducing the number of network layers or parameters, and further reducing model complexity through 

techniques such as pruning and quantization. Furthermore, for lightweight techniques, exploration of the 

characteristics of point cloud data can lead to the design of more efficient algorithms or model structures to 

enhance the algorithm's operational efficiency in resource-constrained environments. 

iv. Research on Self-Supervised Learning and Reinforcement Learning 

Future research will also focus on self-supervised learning and reinforcement learning. These two learning 

methods can provide new ideas and technical support for three-dimensional point cloud semantic segmentation 

tasks 

Self-supervised learning is an unsupervised learning method that trains models by utilizing the characteristics of 

the data itself, without the need for manually labeled labels. In the field of three-dimensional point cloud 

semantic segmentation, self-supervised learning can utilize features such as spatial structure and color 
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information of point cloud data, designing self-supervised tasks to train models. For example, autoencoders or 

generative adversarial networks can be designed to learn representations of point cloud data, and then use the 

learned representations for semantic segmentation tasks. The introduction of self-supervised learning can 

effectively solve the problem of high data annotation costs while improving the model's generalization ability 

and robustness. 

 

Reinforcement learning is a method of learning through interaction with the environment, with the goal 

of enabling agents to learn to take actions in the environment to maximize cumulative rewards. In three- 

dimensional point cloud semantic segmentation, the segmentation task can be modeled as a reinforcement learning 

problem, where the agent learns the optimal segmentation strategy by observing point cloud data and 

performing semantic segmentation operations. By introducing reinforcement learning, semantic segmentation 

algorithms can become more flexible and intelligent, dynamically adjusting segmentation strategies in different 

scenarios, thereby improving segmentation accuracy and efficiency. 

 

V. CONCLUSION 

This paper provides a comprehensive review and summary of the deep learning-based semantic 

segmentation methods for three-dimensional (3D) point clouds. Although the field of deep learning-based 3D 

point cloud semantic segmentation is relatively new, this paper clearly demonstrates the rapid growth and 

effectiveness within this field. The paper gives a detailed introduction to 3D point cloud semantic segmentation, 

from the perspective of deep learning, categorizing the methods into direct and indirect types, and providing a 

detailed analysis and summary of various methods, including their basic principles and advantages and 

disadvantages. Furthermore, this paper also provides a comprehensive overview of the current mainstream 

public datasets and evaluation metrics, to better understand the research status. Finally, this paper outlines the 

future development direction of 3D point cloud semantic segmentation technology, providing valuable 

reference and inspiration for researchers in this field. By reading this paper, it is hoped that scholars and 

researchers will further delve into the field of 3D point cloud semantic segmentation, thus promoting more 

prominent progress in research and practice in areas such as intelligent manufacturing, autonomous driving, and 

intelligent robotics. It is anticipated that various innovative research ideas will continue to emerge in the coming 

years. 
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