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Abstract  
The compressive strength of ultra-high performance concrete (UHPC) is influenced by many factors. Existing 

UHPC compressive strength calculation models are based on own experimental results and obtained through 

regression fitting of experimental data. This method has certain limitations in terms of time and cost, while 

machine learning can establish nonlinear mappings under multiple factors, discovering and revealing the 

complex coupling mechanism between the components of UHPC materials and their compressive strength, 

Therefore, machine learning methods can accurately predict the compressive strength of UHPC. Using 15 

influencing factors as input variables and compressive strength as output variables, three machine learning 

models, Decision Tree (DT), Random Forest (RF), and eXtreme Gradient Boost tree (XGBoost), were 

established to predict the compressive strength of UHPC. The prediction accuracy of each model was evaluated 

using three indicators: coefficient of determination (R
2
), root mean square error (RMSE), and mean absolute 

error (MSE), Finally, the SHapley Additive exPlans (SHAP) method was used to explain the model. The 

research results indicate that the XGBoost model has the highest prediction accuracy, with an RMSE of 5.967, 

MAE of 3.85, and R2 of 0.936. The SHAP method interpretation results show that among the 15 selected 

influencing factors, fiber content has the greatest impact on the compressive strength of UHPC. The above work 

verifies the accuracy . 
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I. INTRODUCTION  

Ultra-high performance concrete (UHPC) is a novel cementitious composite material characterized by 

exceptionally high compressive strength, high ductility, superior durability, and low porosity [1]. Typically, 

UHPC does not contain coarse aggregates and requires high-density packing to achieve the desired particle 

packing density. Consequently, the production process necessitates a significant amount of cement and silica 

fume, along with expensive additives such as high-performance water reducers, quartz powder, and special 

fibers . The coupling mechanisms between different raw materials are intricate, thus requiring considerable time 

and cost for the mix design and experimental analysis of UHPC containing various mineral admixtures [2].  
Machine learning possesses the ability to capture nonlinear and fuzzy relationships between input and 

output variables in a dataset, making it widely applicable in the field of civil engineering. Currently, machine 

learning finds applications in mechanical performance prediction, structural defect detection, and optimization 

of construction materials [3].Yuan et al. [4] conducted research using machine learning methods to predict the 

compressive and flexural strength of Recycled Aggregate Concrete (RAC). Twelve input factors were 

considered, and their influence on the strength of RAC was analyzed. The results showed that the Random 

Forest model outperformed the Gradient Boosting model in predicting RAC strength, demonstrating higher 

accuracy. Kadir et al. [5] utilized features such as moisture content and relative humidity to predict the 

compressive strength of concrete using artificial neural networks, decision trees, support vector machines, and 

other models. Their results showed that the decision tree achieved the best R
2
 value of 0.86, indicating its 

highest accuracy. Roya et al. [6] used a machine learning-based support vector machine (SVM) model to predict 

the flexural performance of Ultra-High Performance Concrete (UHPC) beams. Multiple input variables 

including geometric shape and material properties of the beams were used to predict their flexural performance. 

The SVM model accurately predicted the flexural capacity of UHPC beams with different material and 

structural characteristics. 

This article employs three models from machine learning, namely Decision Tree (DT), Random Forest 

(RF), and eXtreme Gradient Boosting (XGBoost), to predict the compressive strength of Ultra-High 

Performance Concrete (UHPC) under the influence of multiple variables. To establish a comprehensive and 
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reliable dataset, 267 sets of data were collected from experimental data published in domestic and international 

literature, forming a database. The experimental data include various supplementary cementitious materials, fine 

aggregates, ultrafine aggregates, types of fibers, and age periods. During the model training process, arbitrary 

combinations of mineral admixtures were considered: fly ash, silica fume, slag, glass powder, lime powder, 

quartz sand, and quartz powder; arbitrary combinations of fiber specifications were also taken into account, 

including straight fibers, hooked-end fibers, diameters ranging from 0 mm to 0.5 mm, and lengths ranging from 

0 mm to 30 mm; arbitrary combinations of age periods were considered as well, ranging from 3 days to 91 days. 

The predicted values from the machine learning models were compared with the experimental values to verify 

whether machine learning methods can effectively be applied to predict the compressive strength of UHPC. To 

address the "black box" issue of machine learning models and enhance their interpretability, the SHapley 

Additive exPlanations (SHAP) algorithm was utilized to increase the explainability of the machine learning 

"black box" model. 

 

II. UHPC DATA 

2.1 Data Preprocessing 

The dataset consists of 267 sets of data, which were used to train Decision Tree (DT), Random Forest 

(RF), and Extreme Gradient Boosting Tree (XGB) models. The input variables include fiber type (FP), fiber 

diameter (FD), fiber length (FL), fiber content (FC), fly ash (FA), silica fume (SF), ground blast furnace slag 

(GBSF), glass powder (GP), lime powder (LP), quartz sand (QS), quartz powder (QP), sand-to-binder ratio 

(SB), water-to-binder ratio (WB), water reducer (SP), and age (D), with compressive strength (CS) as the output 

variable. The steel fiber content in the dataset is expressed as a volume ratio, while the quantities of other 

components are related to the mass ratio of cement. As the dataset contains data from specimens of different 

sizes, the compressive strength needs to be normalized to a cubic specimen size with a side length of 100 

mm.The data was split into two parts using the train_test_split() function from the sklearn library, with 80% for 

training and 20% for testing. The testing set was used to evaluate the performance of the models on unseen data, 

verifying the accuracy and generalization ability of the models. During the data preprocessing, a 

multicollinearity test was conducted among the feature variables to verify the reliability of the sample data. A 

heatmap of the correlation coefficients between the input variables and the output variable was plotted, as shown 

in Figure 1.From the figure, it can be observed that the correlation coefficient between the steel fiber content 

and compressive strength is the highest, reaching 0.6. Additionally, there is a strong correlation between the 

diameter and length of steel fibers. The correlation between various supplementary cementitious materials and 

compressive strength does not exceed 0.22, indicating the absence of multicollinearity among them. Therefore, 

when predicting the compressive strength of UHPC, all input variables should be selected to improve the 

accuracy of the machine learning model. 
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Figure1: Heatmap of correlation coefficients between input variables and output variable 

 

III. MACHINE LEARNING ALGORITHMS AND EVALUATION 

3.1   Decision Tree 

Decision Tree (DT) [7] is a commonly used data mining technique, which can be employed for 

classification and regression analysis. The decision tree algorithm is a non-parametric model that segments data 

using a series of attributes and generates a tree to describe the classification or regression relationships within 

the data. In this paper, the tree is constructed by recursively partitioning the dataset, selecting the optimal 

attribute as a node at each split, and dividing the dataset into multiple subsets based on the values of this 

attribute. 

 

3.2   Random Forest 

Random Forest (RF) [8] is an algorithm that has been widely applied in both regression and 

classification problems. It utilizes the bagging technique to randomly sample from the original dataset and 

construct multiple subsets. Each subset is then used to train independent predictive models. When making 

predictions on samples in this paper, Random Forest averages the predictions from all decision trees to obtain 

the final output. Through this aggregation method, Random Forest can effectively reduce prediction errors and 

improve prediction accuracy. 

 

3.3   Extreme Gradient Boosting Tree 

Extreme Gradient Boosting Tree (XGBoost) [9] is a machine learning algorithm based on classification 

and regression. In XGBoost, each learner is a decision tree model that generates multiple weak classifiers by 

iteratively optimizing the loss function. Each new learner corrects the errors made by previous learners, 

resulting in a stronger ensemble model. This iterative process of generating learners can improve the overall 

predictive ability of the model and exhibit high efficiency and accuracy when handling large-scale datasets. 

 

3.4   Model Evaluation Indicators 

In order to comprehensively evaluate the accuracy of each model's predictions, this paper adopts three 

metrics: the coefficient of determination (R
2
), the mean absolute error (MAE), and the root mean square error 

(RMSE) to assess the fitting of different models. R
2
 measures the extent to which the model explains the 

variability of the dependent variable, ranging from 0 to 1. A higher R
2
 value indicates better fitting of the data, 
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while an R
2
 close to 0 suggests poorer fitting. MAE represents the average absolute error between predicted and 

actual values, quantifying the average deviation of the model's predictions from the actual values. A smaller 

MAE indicates less prediction error and better model performance. MAE is robust to outliers, providing a more 

stable evaluation of model performance. RMSE calculates the square root of the average squared differences 

between predicted and actual values, serving as a standard deviation of the model's prediction errors. Similar to 

MAE, a smaller RMSE signifies smaller prediction biases and better model performance. RMSE penalizes 

larger error values (outliers), thus emphasizing the accuracy of important prediction results. 

 

3.5   Model Interpretation Methods 
This paper utilizes the global feature maps generated by Shapley Additive Explanations (SHAP) to 

interpret machine learning models [10]. SHAP is a method employed for elucidating predictions made by 

machine learning models, providing an assessment of the contribution of each feature to the predicted outcome. 

Grounded in the concept of Shapley values from cooperative game theory, SHAP furnishes an interpretable 

framework by computing the average marginal contribution of each feature within feature combinations. The 

global feature map integrates the effects of features and their importance by calculating the contribution of each 

feature to the predicted outcome. This allows for quantifying the relative importance of each feature and plotting 

a decreasingly sorted feature importance graph based on importance . In the global feature map, each point 

represents a feature and the SHAP value of a sample. The horizontal axis denotes the SHAP contribution of the 

feature in the sample, while the vertical axis illustrates the relative importance of this feature. When multiple 

data points share the same position on the horizontal axis, jitter stacking is applied to avoid overlap. A higher 

height on the vertical axis indicates a greater impact of the feature. 

 

IV.  RESULTS AND DISCUSSION 

4.1   Machine Learning Model Prediction Results 
The predicted results of UHPC compressive strength by machine learning models are shown in Figure 

2, and it can be observed that: 

(1). From the comparison between predicted values and experimental values in the model prediction 

versus experimental value plot, it is evident that the predicted values of the DT, RF, and XGBoost models can 

closely approximate the experimental values. This indicates that after learning from the UHPC compressive 

strength training data, all three machine learning models possess good generalization ability and can be used to 

predict the compressive strength of UHPC under the influence of multiple factors. 

(2). From the comparison plot and scatter fit plot, it can be noted that there are some cases of 

significant discrete errors in the predictions of the DT model. This is related to the sensitivity of the DT model 

to noise and outliers during the training process. If noise or outliers exist at critical feature split points, the 

decision tree may incorrectly treat them as new branches or leaf nodes, thereby distorting the overall structure of 

the model. 

(3). Compared to the DT model, the results of the RF and XGBoost models are superior. The prediction 

errors of the DT model are mainly concentrated within ±10%, while those of the RF and XGBoost models are 

also primarily within ±10%. This suggests that RF and XGBoost models can reduce the impact of noise and 

outliers on the model by randomly sampling feature data. 
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(a) The scatter fit plot of predicted values versus 

experimental values for the DT model. 
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(c) The scatter fit plot of predicted values versus 

experimental values for the RF model. 
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(b) The comparison plot between predicted 

values and experimental values for the DT 

model. 
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(d) The comparison plot between predicted 

values and experimental values for the RF 

model. 
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(e) The scatter fit plot of predicted values versus 

experimental values for the XGBoost model. 
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(f) The comparison plot between predicted 

values and experimental values for the XGBoost 

model. 
Figure 2: The results of predicting UHPC compressive strength based on different machine learning models. 
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4.2   The Evaluation Results of The Machine Learning Models. 
The evaluation metrics for the three models are depicted in Figure 3. From the graph, it is evident that 

the XGBoost model exhibits the best performance in predicting UHPC compressive strength, with an R2 value 

of 0.936. Compared to the RF model and the DT model, it has improved by 2.41% and 6.48%, respectively. 

This indicates that the XGBoost model can more accurately fit the sample data.The performance on the RMSE 

and MAE metrics also demonstrates the superiority of the XGBoost model. Compared to the RF model and DT 

model, the RMSE of XGBoost is reduced by 26.37% and 41.01%, respectively, while the MAE is reduced by 

13.93% and 27.38%, respectively. This suggests that the difference between the predicted values and 

experimental values is smallest for the XGBoost model, and its predictive accuracy is significantly better than 

that of the RF and DT models.This superiority can be attributed to the various regularization terms provided by 

XGBoost to constrain the complexity of the model. Regularization introduces additional penalty terms during 

the model training process to reduce overfitting to the training data, thus making the predicted values closer to 

the experimental values. 

 

 
Figure 3: The comparison of evaluation metrics for the three models. 

 

4.3   Interpretation and Analysis of Machine Learning Models. 
Figure 4 presents the results of the global feature analysis of input variables for UHPC compressive 

strength based on the SHAP algorithm. The results indicate that the fiber content is the most sensitive input 

variable affecting UHPC compressive strength, with the greatest impact, followed by age, while the effect of 

fiber diameter is relatively smaller. The importance of added supplementary cementitious materials decreases 

from highest to lowest in the order of silica fume, fly ash, lime powder, slag, and glass powder. For fiber content, 

the lower the content, the lower its importance, whereas the higher the content, the higher its importance. The 

second most important variable affecting compressive strength is age, with its importance increasing as age 

increases. 
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Figure 4: SHAP Global Feature Map 

 

V. CONCLUSION  

This study built a database based on collected data from 168 experimental groups, using decision trees, 

random forests, and extreme gradient boosting tree models to predict and analyze the compressive strength of 

UHPC. SHAP was employed to interpret the models. Results indicate high predictive accuracy across all 

models, with XGBoost performing the best, exhibiting lower prediction errors and better fitting effects, 

effectively reducing the risk of model overfitting. The study provides a comprehensive explanation of the 

factors influencing the compressive strength of UHPC. 
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