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Abstract: In the realm of urban infrastructure management, the prompt and accurate detection of concrete 

cracks is vital for ensuring safety and extending the lifespan of constructions. Traditional methods, while 

effective, often involve excessive costs and intense labor. This study introduces a cutting-edge approach that 

utilizes Convolutional Neural Networks (CNNs), specifically adapting the efficient MobileNetV2 architecture, to 

autonomously identify concrete cracks using high-resolution imagery. Utilizing the "Concrete Crack Images for 

Classification" dataset—which includes 40,000 diverse images—our modified CNN model has been optimized 

for not only high-accuracy desktop analysis but also for mobile and drone-based applications, enhancing its 

utility in complex environments. Demonstrating a remarkable validation accuracy of 99.23%, our approach 

outstrips conventional methods, offering a scalable, cost-efficient solution for real-time, comprehensive 

infrastructure monitoring. This breakthrough serves as a foundation for future advancements in intelligent 

infrastructure assessment, driving towards more automated and precise monitoring techniques. 
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I. INTRODUCTION  

In the global context, health monitoring of infrastructure has progressively become a pivotal task in 

urban management, particularly for aging bridges and roads. Timely and accurate detection of concrete cracks is 

crucial not only for extending their service life but also for preventing tragic incidents. Although traditional 

crack detection techniques such as acoustic and electromagnetic testing are widely employed, they often rely on 

labor-intensive operations and incur high costs, with their applicability being significantly limited in complex 

environments. To address these limitations, this study explores a revolutionary approach: using Convolutional 

Neural Networks (CNNs) for image-based automatic detection of concrete cracks. 

With the rapid advancement of computer vision and machine learning technologies, particularly deep 

learning, CNNs have demonstrated superior performance in image recognition and classification across various 

fields. Compared to traditional methods, CNN-based crack detection not only significantly enhances the 

automation and accuracy of the detection process but also reduces operational costs. This paper presents 

breakthrough developments in this technology, including how deep learning models process and analyze large-

scale crack image datasets and their practical applications in real-world infrastructure monitoring. 

Furthermore, this study details the training and validation process of CNN models using the "Concrete 

Crack Images for Classification" dataset, which includes nearly 40,000 high-resolution images of cracked and 

non-cracked surfaces under various surface treatments and lighting conditions. By innovatively adjusting the 

MobileNetV2 architecture, an innovative network structure, we have developed a lightweight yet efficient 

model. This model is not only suitable for large-scale computations on servers but can also be deployed on edge 

computing devices such as mobile devices and drones, significantly expanding its application scenarios and 

practicality. 

This paper not only elucidates an efficient and cost-effective solution for crack detection but also opens 

new perspectives and possibilities for future research in the domain of infrastructure maintenance and safety 

monitoring. As technologies continue to evolve and their applications expand, future infrastructure monitoring is 

expected to become more intelligent and automated, and this research is a part of that evolutionary process. 

 

II. DEVELOPMENT OF CONCRETE CRACK DETECTION METHODS 

2.1 Traditional Methods of Concrete Crack Detection 

This section discusses traditional methods for detecting concrete cracks, broadly categorized into 

acoustic wave-based methods and image vision-based methods. 
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2.1.1 Acoustic Wave-Based Detection Methods 

In Japan, Acoustic Emission (AE) technology has been widely applied since the 1990s to assess the 

integrity of concrete structures. Researchers like Ohno and Ohtsu
[1]

 have used AE to differentiate types of 

concrete cracks, and Aggelis
[2]

 has further refined AE parameters to improve crack distinction. However, despite 

its effectiveness, AE requires sophisticated equipment and is prone to noise interference, which limits its utility 

in complex environments. 

 

2.1.2 Image Vision-Based Detection Methods 

Over the past few decades, image vision technology has undergone significant development. Initially, 

these methods relied primarily on subjective and time-consuming manual visual inspections; Now, it's turning to 

automated machine vision technology. The Digital Image Correlation (DIC) technique is widely used in the 

study of concrete fractures. Ziou and Abbou's study
[3]

 points out that despite advances in image processing 

algorithms, problems such as noise interference remain a challenge. 

 

2.2 Current Research in Deep Learning-Based Crack Detection 

The advent of computer vision and machine learning has ushered in a new era of automated crack 

detection. Deep learning, particularly using Convolutional Neural Networks (CNNs), has revolutionized this 

field with its robust feature extraction capabilities. 

Initially, traditional image processing methods such as edge detection and image binarization were 

commonly used. These techniques, while straightforward, were often hindered by image noise and other 

algorithmic limitations. 

As the technology evolved, more sophisticated methods like DIC and wavelet transforms were 

incorporated to enhance the sensitivity and reliability of detection systems. Contemporary research now 

leverages complex models like CNNs, which can autonomously learn intricate features from extensive datasets 

of crack images, thus substantially improving both accuracy and efficiency. For instance, CNNs developed by 

Ciresan
[4]

 et al. have excelled in image recognition tasks, and models by Cha
[5]

 et al. have shown remarkable 

adaptability and precision in detecting concrete cracks. 

Moreover, the integration of deep learning methods with drone technology allows for automated 

inspections in inaccessible areas
[6]

, reducing manual inspection risks and improving the thoroughness and 

systematization of the detection processes. 

Despite these advancements, deep learning-based crack detection still faces significant challenges, 

including a high dependence on image quality and a limited ability to recognize various crack types. Future 

research will need to focus on algorithm optimization, enhancing data diversity, and developing real-time 

detection systems to overcome these limitations. 

 

III. DATA PREPARATION AND RESEARCH DESIGN 

3.1 Dataset and Preprocessing 

3.1.1 Dataset Overview 

This study utilizes the "Concrete Crack Images for Classification" dataset
[7~9]

, curated by Çağlar Fırat 

Özgenel and publicly available on Mendeley Data since 2019. The dataset encompasses a total of 40,000 images, 

systematically partitioned into two distinct categories, each comprising 20,000 images. Figure 1 illustrates the 

positive class images, characterized by the presence of cracks, while Figure 2 presents the negative class images, 

which are devoid of any cracks. The images are standardized at a resolution of 227x227 pixels in RGB color 

mode. These images are derived from high-resolution original images that capture a wide range of crack 

scenarios on various surfaces within the Middle East Technical University campus. The dataset’s diversity in 

surface treatment and lighting conditions is meticulously maintained by extracting standardized image sets from 

these high-resolution originals without any form of data augmentation such as random rotations or flips. This 

approach preserves the original characteristics and conditions of the images, highlighting the dataset's value for 

training and evaluating crack detection models. To broaden the dataset's diversity and enhance the model's 

generalizability, strategies like image rotation, flipping, scaling, and the combination of minimal field data 

acquisition are employed. This meticulous preparation aims to bolster the dataset's comprehensiveness, ensuring 

robust model training and evaluation. 

 

3.1.2  Data Set Partitioning 

To ensure the high accuracy of the concrete crack detection model, this study meticulously organized 

and divided the dataset using automated scripts. Initially, foundational structures were established within the 

project directory, and existing data directories were automatically cleared to eliminate interference. 

Subsequently, the script categorized and copied data to the training set directory based on file name identifiers. 

Approximately 20% of the images were randomly selected and moved to the validation set to ensure data 
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diversity and model generalization capabilities. Moreover, to prevent data leakage, the validation set data was 

strictly used for performance evaluation. This systematic data management strategy significantly enhanced 

processing efficiency and provided a solid foundation for model training and accuracy assessment. 

 

 
Figure 1: Schematic of Images with cracks in the Dataset. 

 

 
Figure 2: Schematic of Images without cracks in the Dataset. 

 

3.1.3 Data Preprocessing 

In this study, effective preprocessing of concrete crack images is pivotal for achieving high accuracy in 

crack detection. Preprocessing enhances the model's generalization capability and aids in better feature 

extraction from images. Our preprocessing strategy involves: 

Training Set Preprocessing: For the training set, a series of data augmentation techniques simulate 

various shooting conditions and crack appearances, thereby increasing data diversity. The operations include 

Random Resized Crop, Random Rotation, Random Horizontal Flip, Random Vertical Flip, and Color Jitter, 

ensuring uniform input data format for the model. 

Validation Set Preprocessing: The validation set undergoes simpler preprocessing methods to ensure 

fairness and consistency in evaluation. This involves Resize and Center Crop to standardize image sizes inputted 

into the model. 
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Image Standardization: Both training and validation images, after undergoing the transformations, are 

converted into tensors and standardized. Using preset mean values [0.485, 0.456, 0.406] and standard deviations 

[0.229, 0.224, 0.225] derived from ImageNet dataset statistics, images are normalized to expedite the training 

process and enhance model convergence speed. 

These preprocessing steps ensure the model receives consistently high-quality, uniformly formatted 

image data throughout training and validation, laying a solid foundation for effective deep learning model 

training and accurate evaluation. 

 

3.2 The Architecture of MobileNetV2 Network 

3.2.1 Overview of Network Architecture 

MobileNetV2 is an advanced neural network architecture specifically designed for mobile and edge 

devices, which operate in environments where computational resource efficiency is crucial. This architecture 

introduces an innovative structure called the Inverted Residual Block, which not only integrates linear 

bottleneck layers but also employs a streamlined version of depth wise separable convolutions, optimizing the 

trade-off between latency and accuracy. These technological innovations make MobileNetV2 not only 

lightweight but also high-performing, particularly suitable for applications requiring real-time processing and 

sensitivity to power consumption. 

Key features of MobileNetV2 include the use of ReLU6 activation functions, which are particularly 

suitable for fixed-point implementations and optimize computational efficiency; and the removal of non-

linearities in the final layers, which helps maintain higher representational accuracy at lower computational 

costs. These designs make MobileNetV2 extremely efficient in terms of memory usage and processing speed, 

significantly enhancing its practicality for real-time applications. 

Moreover, the lightweight characteristics of MobileNetV2 make it an ideal choice for mobile vision 

applications, such as real-time object recognition and image segmentation. Especially on devices like drones, 

this architecture allows for rapid image processing and decision feedback without sacrificing accuracy, which is 

critical for performing dynamic tasks and working in resource-limited environments. 

With these innovations, MobileNetV2 not only meets the demands of edge computing devices for 

efficiency and performance but also provides a reliable way to maintain high precision and fast responsiveness 

in complex environments. Therefore, it is one of the few architectures that achieves a good balance between 

high efficiency and precision, making it especially suitable for mobile applications and devices with stringent 

requirements on speed and power consumption. 

 

3.2.2 Optimization Adjustments for MobileNetV2 

To adapt the MobileNetV2 model for the task of concrete crack detection, several modifications were 

implemented, primarily focusing on the final layer's configuration, hyperparameter adjustments, and the 

incorporation of regularization techniques. 

(i) Final Layer Modification: 

Originally designed for a 1000-class classification task, the original output layer of MobileNetV2 

features 1000 output nodes. To tailor the model for binary classification pertinent to crack detection, this layer 

was substituted with a new fully connected layer comprising two output nodes, representing "crack present" and 

"crack absent" respectively. 

(ii) Hyperparameter Adjustments: 

Learning Rate: Initially set at 0.001, a decay strategy was applied to the learning rate, reducing it by an 

order of magnitude every three epochs. This approach aids in fine-tuning the model as it approaches a best 

solution. 

Batch Size: A smaller batch size of 8 was utilized during training to enhance the model's generalization 

capability on training data. Conversely, a larger batch size of 256 was employed during validation to expedite 

the evaluation process. 

Optimizer: The Adam optimizer was selected for its capability to adjust learning rates adaptively, 

thereby optimizing the training process and accelerating convergence. 

(iii) Application of Regularization Techniques: 

Dropout: A dropout layer was incorporated into the fully connected layer of the model, with a dropout 

rate of 0.4. This method randomly nullifies the output of a subset of neurons, reducing overfitting and enhancing 

the model’s performance on unseen data. 

These modifications were driven by the goal of enhancing the practicality and efficiency of the model, 

ensuring not only robust performance on training datasets but also high accuracy and reliability in practical 

applications. Through these optimizations, the MobileNetV2 model has been effectively adapted for crack 
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detection tasks, showing its advantages in lightweight and efficient operation, particularly in resource-

constrained environments. 

 

3.3 Training Strategy 

The training strategy employed in this study includes the implementation of a staircase learning rate 

decay policy, starting from a first value of 0.001 and reducing by 80% every five epochs, to finely regulate the 

model training process. Additionally, dropout and L2 regularization were applied after the convolutional layers 

in the model to control model complexity and suppress overfitting. Furthermore, to enhance the accuracy of 

crack detection, most of the convolutional layers were frozen to preserve extensive image recognition 

capabilities, while focusing training on the final classification layer. 

 

IV. EXPERIMENTATION AND ANALYSIS 

4.1 Training Environment Configuration 

The key hardware components utilized in this study include: an NVIDIA GeForce RTX 3060 Ti GPU, 

which provides robust image processing capabilities; an Intel Core i9-12900K CPU, facilitating high-speed data 

processing; a storage solution combining a 2 TB SSD with a 1 TB HDD, along with 48 GB of DDR4 RAM, 

ensuring efficient data handling. The cooling system employed is the Thermaltake X360 liquid cooler, with a 

Gigabyte Z690 UD DDR4 motherboard and a 750W GAMEMAX RGB 750 PRO power supply. 

Regarding the software environment, the system runs on Windows 11, with programming conducted in 

Python 3.11. The use of CUDA 12.1 and CuDNN 8.9.6 enhances the computational performance of deep 

learning tasks. These configurations provide a solid foundation for training and testing deep learning models, 

supporting complex computational demands. 

 

4.2 Calculation processes 

Table 1 delineates the computational architecture of the MobileNetV2 network. This table primarily 

displays the model’s layers along with their respective parameter values, and it includes configurations of 

hyperparameters such as activation functions. A variant of the ReLU activation function, ReLU6, is used within 

the model. Batch normalization (BN) layers are strategically placed after the convolutional layers and before the 

activation functions to perfect the training process. To clarify the computational workflow of Table 1, Figure 3 

presents a flowchart of the model's computational architecture, with each segment of the flowchart denoting the 

layer name and corresponding layer number. 

 

Table 1： Calculation processes. 

Seq. No. Layer (type) Output Shape Param (pcs) 

1 Conv2d [-1, 32, 112, 112] 864 

2 BatchNorm2d [-1, 32, 112, 112] 64 

3 ReLU6 [-1, 32, 112, 112] 0 

4 Conv2d [-1, 32, 112, 112] 288 

5 BatchNorm2d [-1, 32, 112, 112] 64 

6 ReLU6 [-1, 32, 112, 112] 0 

7 Conv2d [-1, 16, 112, 112] 512 

8 BatchNorm2d [-1, 16, 112, 112] 32 

9 Inverted Residual [-1, 16, 112, 112] 0 

10 Conv2d [-1, 96, 112, 112] 1536 

11 BatchNorm2d [-1, 96, 112, 112] 192 

12 ReLU6 [-1, 96, 112, 112] 0 

13 Conv2d [-1, 96, 56, 56] 864 

14 BatchNorm2d [-1, 96, 56, 56] 192 

15 ReLU6 [-1, 96, 56, 56] 0 

16 Conv2d [-1, 24, 56, 56] 2304 

17 BatchNorm2d [-1, 24, 56, 56] 48 

18 Inverted Residual [-1, 24, 56, 56] 0 

... ... ... ... 

154 Conv2d [-1, 320, 7, 7] 307,200 

155 BatchNorm2d [-1, 320, 7, 7] 640 

156 Inverted Residual [-1, 320, 7, 7] 0 

157 Conv2d [-1, 1280, 7, 7] 409,600 

158 BatchNorm2d [-1, 1280, 7, 7] 2,560 

159 ReLU6 [-1, 1280, 7, 7] 0 

160 Dropout [-1, 1280] 0 

161 Linear [-1, 128] 163,968 

162 ReLU [-1, 128] 0 

163 Dropout [-1, 128] 0 

164 Linear [-1, 2] 258 
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Input

Conv2d-4 BatchNorm2d-5 ReLU6-6

Conv2d-1 BatchNorm2d-2 ReLU6-3

Conv2d-10 BatchNorm2d-11 ReLU6-12

Conv2d-7 BatchNorm2d-8 InvertedResidual-9

Conv2d-13 BatchNorm2d-14 ReLU6-15

Conv2d-16 BatchNorm2d-17 InvertedResidual-18

(Repeat pattern for remaining layers)

Dropout-157

Dropout-160

Linear-158 ReLU-159

Linear-161 Output

 
Figure 3 Flowchart of the computational architecture of the model. 

 

4.3 Summary of Results 

In this study, the MobileNetV2 model employed demonstrated exceptional performance in the task of 

concrete crack detection. Figure 4 illustrates the outcomes of the classification, showing that the predicted 

values are nearly identical to the actual values, indicating highly accurate classification results. As illustrated in 

Table 1, The total training time of the model for 10 cycles was only 1058 seconds, which further confirmed the 

applicability of the model for real-time applications. Moreover, the model not only achieved a high accuracy of 

99.23% on the verification set, but also maintained a stable index of 98.92% in terms of average accuracy, recall 

rate, F1 score and overall accuracy, highlighting the efficiency and reliability of the model in crack 

identification. 

These results collectively highlight the profound capabilities of the specifically enhanced MobileNetV2 

model in handling complex image recognition tasks, particularly in engineering applications where rapid and 

accurate structural health monitoring is essential. Future work may explore additional optimization techniques 

and algorithmic enhancements to further improve the model's performance and broaden its application scope. 

 

Table 2 Summary of Results. 

Name Value 

Total training time (s) 1058 
Best val Acc (%) 99.23  
Average Precision (%) 98.92  
Average Recall (%) 98.92  
Average F1 Score (%) 98.92  
Average Accuracy (%) 98.92  
Total params (pcs) 2,388,098 
Trainable params (pcs) 164,226 
Non-trainable params (pcs) 2,223,872 
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Input size (MB) 0.57 
Forward/backward pass size (MB) 152.86  
Params size (MB) 9.11  
Estimated Total Size (MB) 162.55  

 

 
Figure 4: Results of model classification. 

 

4.4 Analysis of Experimental Results 

According to the data presented in Table 3, the MobileNetV2 model demonstrates a notable 

computational time advantage among various deep learning algorithms. In comparison to other commonly used 

convolutional neural networks such as GoogleNet, the ResNet series, and the VGG series, MobileNetV2 

requires only 106 seconds per epoch, significantly less than the 1227 to 3789 seconds required by the other 

models. This result underscores the efficiency of MobileNetV2 in processing time, making it particularly 

suitable for deployment on resource-constrained mobile devices. 
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As shown in Table 4, the model underwent 10 training epochs, during which both training and 

validation loss and accuracy were monitored. Training loss decreased from 19.78% to 16.97%, while training 

accuracy improved from 92.06% to 93.21%. Concurrently, accuracy on the validation set steadily increased, 

reaching a peak of 99.23%. These metrics indicate significant enhancements in the model's generalization 

performance as training progressed, demonstrating its robust learning capabilities and adaptability. 

The experimental outcomes of this study highlight the MobileNetV2 model's efficient computational 

performance and superior image processing capabilities, particularly applicable to real-time and on-site crack 

detection applications. The high generalizability and accuracy of the model ensure reliability across various 

settings, positioning it as a potent tool in infrastructure maintenance. Future research should explore the real-

time deployment of the model and its potential applications in a broader range of scenarios. 

Through these experiments and analyses, this study not only confirms the practicality of the 

MobileNetV2 model in concrete crack detection but also provides a methodological reference for other fields 

with similar needs. Additionally, considering the diversity in image quality and crack types, there is a need for 

future optimization of the algorithm and expansion of the dataset to address more complex detection 

environments. 

 

Table 3: Comparisons of computational time for per round. 
CNN algorithm Time(s) 

MobileNetV2 106 

GoogleNet 1,227 

ResNet50 1,666 

ResNet101 2,447 

ResNet152 3,789 

VGG16 2,827 

VGG19 2,943 

 

Table 4: Training Process Loss and Accuracy Statistics. 
Epoch Train Loss (%) Train Acc (%) Val Loss (%) Val Acc (%) 

1 19.78  92.06  4.48  98.68  

2 19.47  92.28  4.25  98.59  

3 19.16  92.51  4.33  98.71  

4 18.19  92.69  3.51  98.87  

5 17.74  92.96  3.54  98.86  

6 17.98  92.77  3.28  99.00  

7 17.69  92.79  2.98  99.08  

8 17.45  92.81  3.20  99.13  

9 17.66  93.05  3.37  99.03  

10 16.97  93.21  2.73  99.23  

 

V. CONCLUSION 

The research presented in this paper has shown the effectiveness of using MobileNetV2, a lightweight 

convolutional neural network, for the task of detecting concrete cracks in images. Through systematic 

experimentation and analysis, this study has shown that the MobileNetV2 model provides a high level of 

accuracy and efficiency, making it an ideal solution for real-time and on-site applications in infrastructure 

monitoring. The integration of deep learning techniques with crack detection significantly improves the process 

over traditional methods, by enhancing both the speed and reliability of detections. 

Future work will focus on further optimizing the MobileNetV2 architecture and exploring its 

deployment across various mobile platforms. Additionally, efforts will be made to enhance the diversity and 

volume of the dataset to improve the model’s robustness and accuracy under different conditions. The potential 

for integrating this technology with drone and other smart device inspections will also be explored to broaden 

the scope of its applications and to provide more comprehensive solutions for infrastructure management. 

This study not only contributes to the academic and practical understanding of concrete crack detection 

but also provides a valuable method for other domains where similar deep learning approaches can be utilized to 

enhance operational efficiency and accuracy. 
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