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Abstract

In this paper, we established the equivalence relation of Einstein and Moller
energy-momentum prescriptions via distinet diagonal and non-diagonal space
times in teleparallel gravity theory. We perform an extensive investigation of

the localization of energy-momentum in wvarious space-times.

We determined

that both of the prescriptions (Einstein and Moller) provide equivalent results
of energy-momentum and super potentials for any space-times (diagonal and
non-diagonal). We further explored that the tensor quantity .&.:f‘ must be equal
to zero for non-diagonal space-times in teleparallel gravity theory.

Kywords: Einstein energy-momentum complex, Moller energy-momentum com-
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I INTRODUCTION

The energy-momentum localization [1-3] has been a problem for the physics

research community gradually after the emergence of the general theory of

relativity. Numerous authors,including Einstein [4], Moller [2,5], Bergmann-
Thomson [6], and their collaborators, have attempted to use a variety of space-

time measures and energy-momentum formulations [7,8] to solve the energy-
momentum localization issue [9]. They discovered that energy-momentum com-
plexes hold true for well-known and physically significant space times, They eval-
uated the same major emotions in both the GR and TG theories.

The distribution of energy-momentum has been the subject of several in-
vestigations that have been documented in the literature. However, Einstein
was the pioneer in this field, and since then, Lnadu-Lifshitz [10], Tolman [11],
Papapetrou [12), Moller, Weinberg (13|, Bergmen-Thomson, and have all pro-
duced various energy and momentum prescriptions. Numerous methods were
emploved put out since the discovery of general relativity to derive the con-
servation rules that defined generie systems. DBut more recently, teleparallel
gravitation [T'G|. a competing theory of gravity, has also raised this issue [14].
The nsage of Moller preseriptions therelore appears to be more fascinating, use-
ful, and suitable when discovering the energy-momentum since one of the most
significant reasons is that it is not coordinate dependent.

The concept of energy-momentum complexes was heavily questioned for sev-
cral reasons, First, the nature of symmetric and locally preserved, The object
is not tensorial, making its physical meaning unclear [15]. Secondly, varicus
energy-momentum complexes may produce distinet distributions for the same
gravitational backdrop [16,17]. Energy-momentum complexes were shown to
be local objects, contrary to popular belief that gravitational fields cannot be
localized [18]. Penrose and colleagues created a concept known as guasi-local
cuergy |19, 20]. Although these quasi-local masses are theoretically significant,
their definitions have fundamental faws. Chang et al. [21] shown that energy-

momentum complexes are valid formulations of the energy-momentum.
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According to Mikhail et al [22, 23], the energy-momentum issue can also
be localized inside the teleparallel theory of gravity, This idea was originally
proposed to define the energy of the gravitational field. Moller [24] was the
first to recognize that the tetrad deseription of the gravitational field provides
a more aceurate representation of gravitational energy-momentum than general
relativity [GR]. Vargas [25] discovered that the closed FRW spacetimes had zero
total energy when using the teleparallel form of Einstein and Landau-Lifshitz
complexes. This finding is consistent with prior studics by Cooperstock |26] and
Rosen [27]. According to Vargas et al [28], Bianchi types Tand TTin TPT produce
consistent results., Sharif and Jamil [29] discovered that the Lewis-Papapetrou
measure yields different onteomes in TPT compared to GR [30].

In our study, we alm to investigate the distribution of energy and momentum
within the context of TG, considering various metrics. While rescarchers have
explored this issue in different contexts like GR and TG, our focus is specif-
ically on the energy-momentum distribotion in TG and its relationship with
diverse metrics. Recently AT Ali et al [31], showed the equivalence of energy-
momentum complexes of Einstein and Tolman in G.R. They proved that energy-
momentum tensors defined by Einstein and Tolman in G are same for any
space-time. They also established that Einstein and Tolman super-potentials
are different in general. Weeping in view these points, in this paper we will
try to show that Einstein and Moller energy-momentum complexes gives same

results for different space-times in teleparallel theory of gravity [TPGT]. Tn par-
ticular we will take different space-time metrics and show that equivalence of
Einstein and Moller energy-momentum complexes exists in teleparallel gravity
theory, This paper is consists on some sections, in section 3 a general swmmary
of Finstein and Moller energy-momentum complexes in the context of telepar-
allel gravity theory is given. In section 4 there are some particular space-time
examples are given for the verification of the equivalence relation of Einstein and
Moller energy-momentum tensors gives same resulis for the energy-momentum
distribution in teleparallel gravity theory, In section 5 conclusion of the whole
work is given.

1 Einstein and Moller energy momentum Ten-
S0TrSs

1.1 Einstein energy momentum Tensor

The tensor defined by Tinstein for energy momentum in teleparallel gravity
theory and the super potential in the Maoller tetrad theory is given as [25,32,33]

{a‘wbﬂ: = 2ox,, | "
s = gvRhdn = 2gvhgee
where k is the coupling constant and
h = Det(h!) = \[—Det(g,.) = v=g . (2)
and the Frued super-potential ¢i~{w: is given by
elerl = pglpvl (3)
where the tensor S i defined as
sk = ,;(K'M‘i +guiTet gt Ty (4)
where
Felialk éiTj (] Rl _ ikl (5)

Here we note that i@l is the energy momentum density and h®Y where i =
1,2,3 are the momentum density components and the energy current density
compaonent is hdg
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1.2 Moller energy momentum tensor

The Moller energy-momentum tensor in the context of teleparallel theory of
gravity Mikhail et al. [22] are given by

i . )
whel = 2 PEG gulg™ VT - MK S 1(1 - 20K, (6)

and it's another important form is

wliel = Ilf’;?,'r‘g‘g“kl[g-‘jﬁk”' — K7 L N|KPY 2 2KV, (7)
where
PE = dlghl + dioly — gty (8)

and the tensor quantity g, which is defined as
(Sl £ ie
gy = oRa; — ey, (9

MNow the Moller energy-momentum density in TPG is defined as

hwp = 2wpe (10)
iR - _f;”"”'h.'I"’j = %,‘;"k‘l":;‘l";

here bW} stands for energy density and AW where i = 1,2,3 for momentum
density.

2 Some particular space-times Examples

In this section, we will take ten different space-times [34] and to show that the
resulis from the energy-momentum tensors of Einstein and Moller give the same

results in all cases
Example 1. Bell-Szekeres Metric [35]. The Cartesian form of the metric is

1 Dt—z) t—z=z i+ A
ds? = ;dtg — Cos™{ ( 3 ancl[ 5 )+ il 3 z}m[ ___Fz]l}d:n2
2 | | (11)
g Mz—t) t—z  COlt+z, 14z P
—Cos™{ 5 o 5 1+ 3 Jer( 3 Yy — E-riz .
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By putiing the metric coefficients in eq. (3) and eq. (7), we obtained the
following Einstein and Moller super potential components

D(:—z} t—z C-'(t-l—z) H—;* t—z

1
a0 _yso _ L
Dyt =y [C‘o.s{ al 2 )+ 3 1} Co { a 5 )
+ 5 +Cl‘+2]f1 }Tarr{ a‘—z}rr[ )}+C(a‘-+z]0 —}}
2Da(’ —)) - 2Ca (‘ _zj_Dm*[iz )— (.n(“;‘z)
sl Jg ]+'I‘cm{£( z—f}a[f_z)}-}—f_','(t—l—ﬂa —}}|z_r_>a t;z)
. t+z b=z . i‘-— ' N otttz
+2Ca( 5 1+ Dited( 5 }— Dza'( 5 )+Cﬁfr{ 2 J+C';,r1[ 3 N
TR TR (Trm{.l—(D'z —1 u{t - z) 1+ O+ z]rr(t -; 24]}-):{2.‘:’::('t ; z]
+2C"rr{t;2}+na‘-tr } Dzo( t;3]+C'r‘-u’{t-;Z}+C:n—'(t+z)}._
P — g
B2 = Pt = il +‘2{—2f.-"rx(i -I; :J - C’l’,frr{ﬁ -’2_ z} - (-'zn’(i ; z)}
3 = Wit )
(12)

MNow by putting the above values of super-potentials in eq. (1) and eq. (10}, we
obtained the following Einstein and Moller energy-momentum tensors

RO — 00 — - [Cos{B(z — f}m:f 3}}(2Da(f’ 3) + Dt — 2y’ 5 *))2 + DSin
K
[ -

(DG~ a5 5}~ e’ ("5 7 + (- 0" NC(CCost Ot + a7
cze(‘“w(:umt*%n}+Sm{cw+s>m:* (/52 4 (4 2)
t+ =
EEI,

h,-i)g = hof,
DY = pwl =0, i=1,2
(13)

Example 2. The general line element of the gravitational waves [36] is given by
ds? = e Nt — e Vp? — e F- Rdyﬁ + e PR (14)

where P R and N are the functions of ¢ and 2 only.
By putting the metric coefficients in eq(3) and eq(7), we obtained the following

Einstein and Moller super potential components,

:j;.lu — -.l;ltl — B_ZJ"L. . (1,10 -,1,10 C_‘:'PI . {biu — ‘l‘:ﬁ“ _ C_P{Nt |41Jt Ht)
&2 = wi? = _H_P(NI + P —R.) @4[1 o0 — "_P[-'\'_p. + F + )
2 = ¥a = , =
4 4
P13 — 13 — _ e PN, + P+ Ru:)‘
3 3 1 ;

(15)
and Einstein and Moller energy-momentum tensors are obtained by putting the
above super potentials in eq. (1) and eq. (10)

e F(Pyy — PF

_p '
hy = g = H }hfb“ il = © (Pro = Palh)

K

. hdY = pUY =00 =2,3.
(16)

Example 3. Consider the Ruban universe model[17] which is a special form of
the Szekeres universe and is given by

ds® = dit* — Q*dx® — R*(dy® + H*d2"), (17)
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where
y - sinfyl, K =1
Hiy) = e-m.[‘f_\f;iy] 0. WK =0
sinfyl, if K =-1

and K is the curvature parameter.(}(t, ) and R(#) are free functions and will
be determined.
By putting the metric coefficients in eq. (3) and eq. (7), we obtained the
following Einstein and Moller super potential components

m m
o2 = g0 = _QQ C 30— 9l — HORR' . 9 = 02 = _Qg
(18)
P20 = 20 = HR(RJQ;-F QuR) _ P2 = ¥,
and Einstein and Moller encrgy-momentum tensors are obtained by putting the
above super potentials in eq. (1) and eq. (10),

i ITRR'Q, i ‘
nal = pet = @ o _ggo 2 IRRQ: g0 g0 RITQR + RO
K M M
hdf) = hif =0,
(19)

Example 4. Consider the Szezkers class-1 space time which is defined by the line
elemnent

ds® = —dt® + Hiﬁ{drr:?' + rﬁyﬁ} + 24422, (207

where A = Ale.y, 2.8) and B = Bz, y, 2. 1).
By putting the metric coefficients in eq. (3) and eq. (7)., we obtained the fol-
lowing Einstein and Moller super potential components,

V4, +B,)

D10 = plo = eA{A;-2+ B.) . 20 = g2 3 L Q0 = g0 = As2B g
Pl g0 _ ! 4_23(—;1* — B P _ B | P2 g ‘-‘A;y_.
) . ~A+IR . )
o' =t = ——— =P = uP,
12 12 etdy a0 30 Ay 13 13 e'B, o) 21 EABW
e ==, == B e = et o=
(21)

and Einstein and Moller energy-momentum tensors are obtained by putting the
above super potentials in eq. (1) and eq. (10)

e 4228 (2B2 — B. A, + B..) + 24 A2+ A, B, + A, + By, + A2+ A, B. + A,. + B..)

L

hd)) = ¥ = h

Be0 = g0 = & \(Ae + 2B2)(A+ By) + Ay + B

i
hlf.lg _ Ii';'l]:l'g _ HA+ZU[I[,4U +?ny}{f1f + np} - Agy + lr]‘fy]
5
2eM2B(A DL, + 28,3, + 5..))

Y = hivf =

i
(22)

Example 5. Consider the line element for spatially homogeneons and anisotropic
Bianchi type T space time [37] is define by,

ds? = —dt? + Aldx® + B2dy? + [dz?, (23)

where A, B and I are depends upon  only. By putting the metric coefficients
ineq. (3) and eq. (7). we obtained the following Finstein and Moller super
potential components
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B10 — 410 nxr;qr,,n 20— g .Ayl";-BFUA a0 g .4;1?241: B, A
310 = glo = _F(B,_F;—F,B] , @2 =l = -’;1;; el = = %
020 = ¢ = _B{_—'l,.l".; I A) el =l = il:; P =l = f-;iz = ez gl
B0 - P = _1‘(A4-52+ B A) E SE L l;ir T l;l; .~
(24)

and Finstein and Moller energy-momentum tensors are obtained by putting the
above super potentials in eq. (1) and eq. (10)

hdld = hil) = m[ﬂ{zb’fﬁz + BYAL, + )AL - 2 Aye,

+ BI"QWA;;T;- il T“‘iyg]} + .flz{Bz(rszz - BZFZ_-"I - riﬁyry-i-
BT°T,,} — B*T?A,(T*B, + BT,) + A*B*T*(2B,T, +., +BT..)|

ha? = AU = L[BALT, 4 (A, B, + AB (25)
1~ 1= E[ ' + |:— T J..r.'} -|—;‘1{_FJ.B.|_ + B.rr‘.'. + Brtu:)]
1 .
hdl) = hi}) = E[AB_,.]“; +T(B,A + By,) + BT, A + AT, + AT,
1
hdf = hY) = —|I.(BA, + AB) + I'(B. A, + A. B + BA,. + AB,.)).
IS
Example 6. Consider the metric function,
de? = —A2de? + BRde® + PRy + G2, (26)
where A. B F and (¢ are the lunctions of Ly and z. By putting the metric

cocfficients in eq. (3) and eq. (7), we obtained the following Einstein and Moller
super potential components

w _ AGF: + FG,)

. A(GB, + BGy)
T £ FG) g0 _ g0 . AGDy £ 1Gy)
_ ., A(FB.+ BF,) —B(GF, + FG,)
¢.’»ﬂ' — ‘I‘SU — .'I)l[] — ‘I'.lﬂ —
v . 26 Tt ! 24
o3 B((,AZ;A(:,,)14}21 o B(FA;CJ: AF.)
. ; ' . (27
$0 _ 20 _ —F(GB: + BGY) $l2_pl? F(GA: + AGL)
! : 24 T : 2B
. . F(BA, + Al . . -G, + I3F,
o3 w ( :,+ ‘).¢;1”_~1r_.§“_ G( rt+ t)
2G 24
k - {;(F“qr + AFrJ g as C;(B.-‘41 + A B‘r )
13 _ ql3 _ 21 _ g8 _ v Y
Byt =0y = BYE By =0 SF ’

and Einstein and Moller energy-momentum tensors are obtained by putting the
above super potentials in eq. (1) and eq.(10)
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