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Abstract  
With the annual increase in global carbon emissions, the resulting environmental issues are becoming 

increasingly severe. CCUS technology, as a crucial means of carbon capture and storage, has become the focus 

of extensive research by scholars. Currently, the most common method for CO2 capture is the amine-based 

process, yet it still faces challenges such as high energy consumption and degradation rates. Therefore, there is 

still significant room for improvement in the development of CO2 capture technology based on amine solutions. 

In this paper, we review the current research status of CO2 capture using amine solutions both domestically and 

internationally in recent years. We systematically elaborate on the progress in absorbent research, providing 

insights for industrial-scale carbon capture and environmental protection. 
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I. INTRODUCTION 
Given the current social environment, the rapid development of human industrialization has resulted in 

the substantial emission of CO2 into the atmosphere, leading to global warming [1]. Failure to promptly address 

the issue of CO2 emissions is projected to cause a global surface temperature increase of 2.5 to 7.8°C by 2100 

[2]. In response to this problem, Carbon Capture, Utilization, and Storage (CCUS) technology has emerged as a 

crucial means of carbon mitigation, garnering significant attention from scholars [3-5]. The initial phase of 

CCUS involves CO2 capture, which is the process of separating CO2 from industrial production, energy 

utilization, or the atmosphere [6]. This process is primarily categorized into pre-combustion capture, oxy-fuel 

combustion capture, and post-combustion capture [7]. 

Post-combustion capture is a technology that separates and purifies CO2 from the flue gas tailings after 

dust removal and desulfurization following the combustion of fossil fuels. Generally, this technology is installed 

downstream of dust removal and desulfurization and denitrification units. Therefore, it can be integrated with 

boilers without altering existing boiler structures. It boasts high selectivity and capture rates. Currently, it is a 

mature technology. Mainstream absorbent liquids on the market include ammonia solution [8], potassium 

carbonate solution [9], ionic liquids [10], and alkanolamine solution [11]. Ammonia solution tends to evaporate 

easily, greatly hindering its development potential in carbon capture. Moreover, leakage of ammonia solution 

can cause secondary environmental pollution. Potassium carbonate solution has a low absorption rate and a 

greater corrosive effect on equipment. The production process of ionic liquids is complex and expensive, 

making them unsuitable for large-scale use in power plants. Therefore, alkanolamine solution is the most 

commonly used and suitable absorbent solution currently[12-14]. 

The amine absorption method, characterized by high absorption efficiency and large processing 

capacity, is the most suitable technology for large-scale carbon capture in various industries. However, this 

method suffers from high energy consumption and significant solvent loss. Therefore, improving the absorbent 

to achieve high absorption efficiency and designing a feasible process with low regeneration energy 

consumption is of significant importance for industrial carbon capture and environmental protection. 

 

II. Traditional alcohol amine method  

2.1 Primary and Secondary Amines Absorption Mechanism 

It is generally believed that different types of organic amines exhibit different mechanisms for CO2 

absorption, which mainly include zwitterion mechanism and alkaline catalysis mechanism. Primary and 

secondary amine molecules mainly refer to molecules with active hydrogen atoms around the nitrogen atom, 

and their reaction with CO2 follows the "zwitterion mechanism." This reaction mechanism was proposed and 

improved by CAPLOW[15] and DANCKWERTS[16]. According to the zwitterion mechanism, the reaction 

between primary and secondary amines and carbon dioxide is completed through a two-step reaction: the first 
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step is the reaction of CO2 with amine molecules to generate zwitterionic intermediates; the second step is the 

deprotonation of zwitterions to form ionic aminoformate and protonated amine. The reaction equations are as 

follows:  

 

1 2 2 1 2
R R NH CO R R NH COO                                         （1） 

1 2 1 2
R R NH COO B R R NCOO BH                                    （2） 

 

2.2 Tertiary Amines Absorption Mechanism 
The alkaline catalytic hydration mechanism proposed by Donaldson et al. [17] is widely accepted. It is 

observed that tertiary amines lack hydrogen atoms on their amino groups, so they do not follow the zwitterion 

mechanism during CO2 absorption; hence, tertiary amines do not directly react with CO2 to form zwitterions. 

However, tertiary amines readily undergo protonation reactions with H2O, thereby facilitating the dissociation of 

H2O molecules to release OH
-
. The free OH

-
 ions in solution react with dissolved CO2 to form HCO3

-
.  

 

3 2 3
R N H O R NH OH                                              （3） 

2 3CO OH HCO                                                   （4） 

 

2.3 Hindered Amines Absorption Mechanism  

Sterically hindered amines refer to amines with amino groups located on the third carbon atom, or 

secondary amines with amino groups located on the second and third carbon atoms. Taking common AMP as an 

example, the reaction mechanism of sterically hindered amines is illustrated. 

 

22AMP CO AMPCOO AMPH                                 （5） 

2 3AMPCOO H O AMP HCO                                 （6） 

2 2 3AMP CO H O AMP HCO                                （7） 

 

III. PROGRESS IN THE RESEARCH OF ABSORBENTS 

3.1 Mixed Amine Absorbents 

The traditional amine absorption method commonly uses monoethanolamine (MEA) and piperazine 

(PZ) as chemical absorbents, which exhibit fast absorption rates but high desorption energy consumption. On 

the other hand, tertiary amine N-methyldiethanolamine (MDEA) has a high absorption capacity and low 

desorption reaction heat, albeit with slower absorption rates. Meanwhile, 2-amino-2-methyl-1-propanol (AMP), 

as a secondary amine, demonstrates intermediate absorption rates between primary and tertiary amines due to 

steric hindrance effects. Therefore, traditional amine solvents face challenges in simultaneously achieving high 

absorption capacity and low desorption energy consumption. To address this, researchers have explored the 

strategy of using blends of organic amines with complementary properties. These mixed amines combine the 

absorption performance of two types of amine solutions to meet the requirements of both high absorption 

capacity and low desorption energy consumption. Zhang[18] employed diethylenetriamine (DETA) as the 

primary absorbent and triethanolamine (TEA) as the auxiliary absorbent, with MEA as a reference standard. The 

resulting solvent achieved a saturated CO2 absorption capacity of 3.71 mol/L, a maximum desorption rate of 

1.94 mmol/(L·min), and a desorption energy of 160 kJ/mol. Compared to MEA, the saturated absorption 

capacity increased by 34.42%, the maximum desorption rate increased by 170%, and the energy consumption 

decreased by 21.2%. Chen[19] simulated the CO2 absorption and desorption performance of MEA absorbent 

and a blend of MEA and spatially hindered amine AMP using Aspen Plus software. The results showed that the 

absorption and desorption performance of the mixed amine with a concentration of 30 wt% (molar ratio 

MEA:AMP = 1:1) outperformed that of the single MEA absorbent. Wang[20] investigated the enhancement of 

CO2 capture capacity in MDEA solution by using triethylenetetramine (TETA) and aminoethylpiperazine 

(AEP). The results indicated that the CO2 absorption capacity, average absorption rate, and desorption efficiency 
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of 26% MDEA + 2% TETA-2% AEP + 70% H2O were 3.08, 3.05, and 1.18 times higher than those of 30% 

MDEA solution, respectively. Lu [21] found that adding activators such as MEA, DEA, PZ, and AMP to 

MDEA base solution can enhance the saturation absorption capacity of the absorbent. Suleman[22] conducted 

experiments and modeling on carbon dioxide solubility in AMP/MDEA under high gas loading conditions at 

pressures (102.5-4110 kPa), temperatures (303.15-343.15K), and solvent concentrations (1+1 and 2+2 M). The 

results showed that adding AMP to MDEA increased the overall carbon dioxide loading, consistent with 

experimental values reported in the literature. However, due to the intrinsic properties of amines, their 

regeneration capability remains limited. 

 

3.2 Phase Change Absorbents 

Based on organic amine solutions, the chemical absorption method consumes a high amount of energy 

during the regeneration process [23], accounting for over 80% of the total energy consumption for CO2 capture. 

Since the concept of phase-change absorbents was proposed by scholars at Hampton University in 2009, it has 

been demonstrated that restricting absorbent entry into the desorption unit can effectively reduce the energy 

required for regeneration [24]. In recent years, researchers have shifted their focus to physical solvent-based 

phase-change absorbents, which can significantly reduce the energy consumption for regeneration by 

minimizing the sensible and latent heats during desorption [25-26]. In phase-change absorption systems, CO2 

absorption leads to the formation of CO2-lean and CO2-rich phases, and by only thermally regenerating the CO2-

rich phase, the regeneration energy consumption of the system is successfully reduced. Phase-change 

component systems are categorized into liquid-liquid phase change and liquid-solid phase change absorbents. 

 

3.2.1 Liquid-liquid phase change absorbent 

Phase change absorbents generally consist of three substances: amines, alcohols, and water. Wang [27] 

used a mixture of DETA and cyclohexylamine to capture CO2 from simulated flue gas, finding that the upper 

layer was CO2-rich and mainly composed of DETA and DETA carbamate, while the lower layer was CO2-lean, 

with cyclohexylamine present alone. Papadopoulos [28] designed a novel phase change solvent, S1N/DMCA 

(N-cyclohexyl-1,3-propanediamine and N,N-dimethylcyclohexylamine). The cyclic capacity was 1.19 mol/kg, 

and the regeneration energy consumption was 2.3 GJ/t. Hu [29], based on the Hansen solubility parameter 

theory, screened a novel phase change absorbent, MDEA/polyethylene glycol dimethyl ether (NHD)/H2O, using 

MDEA as the main absorbent, organic solvent as phase separation promoter, and water as the solvent. The 

results showed that the MDEA/NHD/H2O phase change absorbent had the highest thermal stability compared to 

the 30wt% MEA absorbent. The MDEA/NHD/H2O phase change absorbent with a mass ratio of 3:5:2 had the 

highest CO2 absorption capacity of 1.1061 molCO2/L and reduced the volume of desorption liquid sent to the 

desorption unit by 42%. At a desorption temperature of 90°C, the CO2 desorption efficiency reached 98.96%. 

Lu [30] studied a "amino-imidazole bifunctional ionic liquid-ethanol-water" phase change system for CO2 

capture, which exhibited good stability and recyclability, with an absorption rate of up to 1.548 mol/mol. Chen 

[31], using tertiary amine 3-methylamino-1-propanol (MAP) as the main absorbent, dimethyl sulfoxide (DMSO) 

as the organic diluent, and pentamethyldiethylenetriamine (PMDETA) as the auxiliary absorbent, prepared a 

novel MAP-DMSO-PMDETA ternary phase change absorbent. Experimental results showed that at a mass ratio 

of MAP, DMSO, and PMDETA of 3:6:11, liquid-liquid phase separation occurred after absorption saturation. 

The absorbent loading was 0.79 mol/kg, the absorption load was 0.47 mol/mol (based on MAP), the volume 

fraction of rich phase was 45.1%, and 95.1% of CO2 was enriched. This ternary phase change absorbent 

exhibited excellent desorption performance and good cyclic stability. After 5 absorption-desorption cycles, the 

desorption load stabilized at around 0.34 mol/mol (based on MAP), and the desorption efficiency reached 

69.4%. 

 

3.2.2 Solid-liquid phase change absorbent 

Most liquid-solid phase change absorbents are water-poor or non-aqueous, and precipitate in solid form 

during absorption, which significantly reduces energy consumption and can reduce equipment corrosion. After 

CO2 desorption, the solid phase can convert to the liquid phase, which can be mixed with the previously 

separated CO2 lean solution and re-enter the absorption tower for recycling. The process flow of solid-liquid 

phase change absorbents for CO2 capture is shown in Figure 1.8. Malhotra et al. [32] reported a novel amine-

pyridine solvent with the potential to capture CO2 from coal-fired power plants. The solvent rapidly forms 

crystalline solids with CO2, exhibiting a high CO2 capture capacity (11% to 20%) and can be regenerated within 

the temperature range of 120 to 150°C. PERRY [33] developed a 1,3-bis(3-aminopropyl)tetramethyldisiloxane 

as a liquid-solid phase change absorbent, notable for its thermal stability, low energy consumption, and high 

CO2 cycling capacity. Long Qinghai et al. [34] constructed an isophorone diamine (IPDA) - water binary solid-

liquid phase change absorption system. The study showed that a 1.00 mol·L
-1

 IPDA aqueous solution had a 

saturation absorption load of 0.85 mol CO2·mol·L
-1

 at 313.15 K, with the absorption product being white 
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crystalline powder and enriched in the lower layer of the solution. The enriched liquid volume accounted for 

43.60% of the total solution volume, while the CO2 enrichment rate reached 93.98%. ZHENG [35] introduced a 

TETA+ethanol liquid-solid phase change adsorbent, which increased CO2 solubility, achieving a CO2 removal 

rate of up to 81.8%. Ren Enze [36] designed a liquid-solid phase change absorbent composed of MDEA+PZ+N-

methylpyrrolidone (NMP)+H2O. The results showed that when the mass fractions of NMP and PZ in the 

absorbent reached 50% and 3% or more, respectively, the absorption of CO2 produced PZ-aminoformate ester, 

reaching saturation and precipitating into solid phase, which initially increased with the increase of CO2 

solubility and later decreased with the generation of PZ-diaminoformate ester, which is more soluble in water, 

leading to a decrease in the solid phase. In conclusion, phase change absorbents have significant energy-saving 

potential, but further research is needed on issues such as formulation, phase change mechanism, and phase 

change solution viscosity based on these absorbents. 

 

IV. CONCLUSION 

The development history and research progress of the traditional alcohol amine method are 

systematically discussed. The primary challenge in the development of the alcohol amine absorption method 

remains the issue of regeneration energy consumption. Additionally, the regeneration performance of mixed 

amine methods is limited due to the nature of alcohol amines. The concept of phase change absorbents has been 

proposed to address the regeneration energy consumption, offering significant insights and methods. Leveraging 

the phase separation properties of absorbents reduces the regeneration volume and effectively lowers the 

regeneration energy consumption. In future studies, environmentally friendly absorbents should be selected to 

construct phase change systems. However, phase change systems still face issues such as high viscosity. 

Therefore, novel absorbents with high CO2 absorption capacity, low regeneration consumption, low losses, and 

suitability for large-scale industrial production should be developed by integrating the properties of alcohol 

amine solutions. These efforts will provide crucial support for mitigating global greenhouse gas emissions. 
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