
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 12 Issue 3 ǁ March 2024 ǁ PP. 174-180

www.ijres.org 174 | Page

Progressive Web App (PWA): Optimal Strategies &

Challenges

Chakradhar Avinash Devarapalli, Software Developer
Email:avinashd7[at]gmail.com

Abstract - Progressive Web Apps (PWAs) have recently emerged as an innovative approach to close the gap

between web and native applications by incorporating both of their functionalities, offering enhanced user

experiences with features such as offline functionality, push notifications, and app-like interactions within the

web. This paper aims to explore the strategies and challenges involved in the development of PWAs, using

insights from recent advancements and academic literature. The study identifies key usable/viable strategies,

including service worker implementation, performance optimization, and security considerations, as essential

pillars for successful PWA development and implementation. Additionally, the research highlights significant

challenges such as browser compatibility, service worker complexity, security concerns and user engagement,

underscoring the need for innovative solutions and best practices.

Keywords – Progressive Web App, PWA, web app manifest, PWA challenges, PWA strategies, service worker,

cross-platform development, feature detection, Performance optimization

--- ----

Date of Submission: 05-03-2024 Date of acceptance: 18-03-2024

--- ----------

I. Introduction:

The dawn and rise of web development has experienced a very stimulating shift in recent years with the

induction and advent of Progressive Web Apps (PWAs) [1]. Representing an amalgamation of web and mobile

based tech, PWAs aim to provide users with an experience similar to native web applications while retaining

and maintaining the accessibility and flexibility provided by live-hosted web applications and platforms [1].

Defined as "user experiences that have the reach of the web and are reliable, fast, and engaging" by Google

Developers. PWAs embody a vast treasure of design principles, development methodologies, and technical/sub-

technical standards aimed towards enhancing the performance, reliability, and engagement of web applications

across diverse devices [3, 2, 4].

The conceptualization and inhibition of Progressive Web Apps traces back to the gradual work of Alex

Russell and Frances Berriman in 2015 valuing a strife moment in the evolution of web development practices

and methods [3]. Unlike conventional websites, which often grapple with performance bottlenecks, limited

functionality, and the absence of offline support, PWAs offer users a seamless and immersive experience

irrespective of network connectivity [5, 6]. PWAs resolve the challenges associated with native app

development, such as platform-specific frameworks, app store approval processes, and installation barriers.

Previous studies provide insights into the technical aspects and implications of PWA. The Emergence of

Progressive Web Apps delve into the technological advancements and design principles underpinning PWAs,

emphasizing their potential/capability to close the gap between web and mobile experiences [3]. Insights on

PWAs provides a comprehensive exploration of PWA development techniques, best practices, and case studies

The adoption of PWAs has been popular across diverse sectors and with developers working on the

technology to make it better, with organizations leveraging this technology to deliver engaging web experiences

to their user base. For instance, Twitter Lite, a PWA developed by Twitter, provides users with a lightweight,

data-efficient alternative to its native mobile app, enabling seamless access to timelines and tweets even under

low-bandwidth conditions.

 In a similar manner, Forbes, a widespread media outlet focusing on financial data and company growth,

implemented a PWA to enhance page load times and user engagement, resulting in a significant uplift in

interactions and revenue, although it might not be a complete app as discussed but still passes as a PWA.

Against this research, this paper aims to explore the implementation of Progressive Web Apps and their

transformative impact on web applications. By synthesizing insights from academic literature, analyzing case

studies, and evaluating the challenges and opportunities associated with PWA development, this paper seeks to

put forward the future trajectory of web development and the potential of PWAs to redefine the digital

landscape.

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 175 | Page

II. Analytical Review

Progressive Web Apps (PWAs) have proved themselves as a working and practical approach to close

the gap between web and mobile experiences by offering a framework that allows both paradigms to work in a

single domain, offering users the reliability and experience of native apps while withholding the accessibility

and versatility of web-based platforms [4, 5, 1]. Despite the benefits, PWAs offers several challenges that

persists in their implementation and adoption, requiring a deeper understanding of the hassles facing this

innovative technology and the strategies employed to overcome them.

One of the most prominent and surfacing challenges in PWA development revolves around optimizing

user experience and performance to deliver fast and responsive output to users. Poor performance can

undermine user engagement and retention which can lead to poor results and bad turnover, particularly on

mobile devices with limited processing power and network bandwidth which is common in areas with network

limitations [9]. Strategies for performance optimization include code minification, lazy loading of assets, and

efficient caching strategies using Service Workers as reviewed in past literature posted by various experienced

authors [6, 7, 8]. Another relatively important aspect of PWA development obtained from past literature is

providing robust offline support, enabling users to access content and functionality even in the absence of an

internet connection by employing service workers and other JavaScript elements to keep the platform running.

Implementing effective offline caching strategies using Service Workers is essential to ensure error-less offline

experiences [9]. Managing offline data synchronization and conflict resolution can pose significant challenges,

particularly in applications with dynamic content and user-generated data [10].

Another aspect relates towards ensuring cross-browser compatibility in PWA development to reach a

broad audience across diverse devices and platforms which is main reasoning and objective of fairly well

working PWAs. However, differences in browser capabilities and support for web standards can complicate

development and testing efforts where an internet browser such as IE (Internet explorer) may not be up to date

to ensure compatibility with JS features. Strategies for addressing cross-browser compatibility issues include

feature detection, PolyFills, and progressive enhancement techniques [11].

Security and privacy factors are paramount in PWA development to protect user data and reduce the risk

of security vulnerabilities as PWAs can be prone to external malware and brute attacks, which may hinder their

overall abilities to perform as advertised. PWAs are served over HTTPS to ensure data integrity and

confidentiality, but developers must also address security threats such as cross-site scripting (XSS) [12] and

cross-origin resource sharing (CORS) issues [13]. Strategies for enhancing security include implementing

content security policies (CSP) [12, 8, 13], enforcing secure communication protocols, and conducting regular

security audits and penetration testing which is vital to ensure the working performance of a PWA.

PWAs most commonly rely on web-based distribution channels which are responsible for potential

clientele outreach and lead turnovers, this results in raising challenges related to discoverability and installation

friction. Users may struggle to find PWAs amid the vastness of the web unless they are advertised heavily by

the publishing corporation, hindering adoption and engagement.

III. Identified Challenges
Identifying/observing the challenges related to the conversion of a web app into a Progressive Web

App (PWA) is crucial for understanding the complexities involved in the process. Here are some of the key

challenges associated with implementing PWAs:

3.1 Service Worker Complexities

The complexity of service workers lies in the intricate/in-depth nature of implementing and managing

these JavaScript files within Progressive Web Apps (PWAs). Service workers play an extremely important role

in allowing advanced features such as offline functionality, push notifications, and background synchronization,

thus significantly improving the user experience and user satisfaction along with device support [1, 5]. In

contrast, their implementation requires intricate attention to detail, including caching strategies, network

interception, and event handling. Service workers also operate independently of the main browser thread and the

web-app, introducing complexities in debugging, error handling, and version management.

3.2 Performance Optimization

Performance optimization inhibits a multifaceted challenge in the development of Progressive Web

Apps (PWAs) which has the potential to halt development and even reduce responsiveness on older devices,

given the ideology to deliver fast, responsive experiences across a diverse array of devices and network

conditions [16]. The challenge arises from the need to balance rich functionality and immersive features with the

imperative of minimizing loading times and optimizing resource usage that requires advanced frameworks and

resource-heavy functions of JS or nay other scripting/programming language, some of which may not be

supported of legacy or older browsers/devices [17]. Achieving optimal performance necessitates sharp attention

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 176 | Page

to various aspects of web development, including asset optimization, lazy loading of resources, and efficient

caching strategies.

3.3 Security & Data Authentication

Security concerns portray a paramount challenge in the development and deployment of Progressive

Web Apps (PWAs) on high- and low-end devices, where the fundamental goal is to ensure the protection of

sensitive data and user privacy in an online environment as is suggested and required by law in some regions.

This challenge is multivariate, encompassing various variables such as secure communication protocols, data

encryption, and protection against common web security vulnerabilities [10, 9]. Using secure HTTPS protocols

is required and important to safeguard data integrity and prevent tampering of important and sensitive data

during transmission. PWAs must employ robust authentication mechanisms, such as token-based authentication

or OAuth (Google OAuth2 etc.), to verify user identities and protect against unauthorized access [16]. Features

such as push notifications and background synchronization introduce potential security risks, requiring strict and

robust measures to reduce the threat of abuse or exploitation. Adhering to established security best practices,

such as content security policies (CSP) and sub-resource integrity (SRI), is essential to prevent cross-site

scripting (XSS) and cross-origin resource sharing (CORS) attacks and other common security vulnerabilities.

IV. Viable Strategies

4.1 Web App Manifest File

The Web App Manifest is a JSON file written in JavaScript that provides metadata about a Progressive

Web App (PWA), which enables browsers to identify and install the web application on users' devices

converting it into an effective PWA [9, 16]. The technical aspects of implementing a Web App Manifest

includes highlighting its structure, key properties, and implications for PWA development. The Web App

Manifest file contains a set of key-value pairs defined in JSON format (think of it as a NoSQL database to store

values), specifying various attributes of the PWA, including its name, icons, colors, display preferences, and

navigation behavior [2, 17]. The manifest file is typically named manifest.json and resides at the root of the

application directory through which the actual web app runs.

The manifest.json file in figure 1 outlines metadata for a PWA. Key properties include the app's name,

short name, description, icons, start URL, background color, theme color, display mode, orientation, scope, and

service worker. The icons array specifies multiple icon images at different sizes and resolutions, while the

service worker properties define the location and scope of the service worker script which will be implemented

to make the PWA include offline functionality.

4.2 Service Workers

Service workers are an important and fundamental component of modern web development practices,

enabling developers and builders to create robust, responsive, and offline-capable web applications that can be

converted into Progressive Web Apps (PWAs) [16]. Service workers are generally referred as some JavaScript

files that run in the background of a web application, separate from the main browser thread [9, 18, 12], they are

not in the active running directory of the web application but rather they work in the background. They act as

programmable proxies, intercepting and handling network requests from the application, enabling features such

as offline support, push notifications, and background synchronization for already loaded and to-be loaded

content [13, 7]. Service workers operate independently of the web page, allowing developers to implement

advanced caching strategies, perform background tasks, and manage application state even when the browser is

closed which in actuality defines the purpose of a PWA.

The code-block in figure 2 represents an extremely simple service worker which undertakes the

responsibility of caching the defined URLs when the install event is triggered. This simple code-block can be

implemented in the PWA in the form of a JS script file within the root directory of the main program and linked

to run in offline conditions.

4.3 Progressive Enhancement

Progressive Enhancement in PWAs is a web development strategy used by most developers that

prioritizes the implementation of a baseline experience accessible to all users, regardless of their device,

browser, or network capabilities (basically adding responsiveness in a gradual manner). This technical discourse

explores the foundational principles and implementation techniques of Progressive Enhancement, elucidating its

role in fostering inclusive and resilient web experiences. There are several methods and ideologies that can be

implemented when it comes to progressive enhancement such as graceful degradation, functionalities and

layered enhancements.

Layered enhancement includes the involvement of additional layers of presentation, interactivity, and

functionality using modern web technologies such as CSS3, JavaScript, and HTML5. These enhancements

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 177 | Page

should be applied progressively, based on the capabilities of the user's device and browser. Layered

enhancement works on the principle of providing a viewpoint available to all respective devices.

Graceful degradation provides fallbacks or alternative experiences for users with less capable devices

or older browsers that do not support modern web technologies which allows the users with older devices to

access all the functionality of the PWA just with or without the full potential of the responsive UI. This ensures

that all users can access and interact with the content, even if they cannot take advantage of the latest

enhancements.

4.4 Feature Detection

Feature detection is a technique/framework used in web development to determine the capabilities of

the user's device and browser and calculate the required resources needed for the user to access/use the said

PWA according to which, the PWA can be developed, this allows developers to adaptively enhance the web

experience based on these capabilities.

4.4.1 Native Feature Detection

NFD utilizes built-in JavaScript methods or APIs to detect support for specific features or APIs which might or

might not be supported on an array of legacy devices. For example, developers can use the typeof operator to

check for the existence of JavaScript objects or properties, or use feature detection methods provided by APIs

such as the Document Object Model (DOM) or the Web APIs.

4.4.2 Polyfills

Polyfills or shims are used to provide fallback or legacy support for features that are not natively supported by

the user's browser. Polyfills are JavaScript libraries that emulate the functionality of modern features in older

browsers providing an alternative to the actual functionality of the PWA, allowing developers to use modern

web standards while maintaining compatibility with legacy browsers. The code depicts a polyfill which works

on the fetch API to see if it exists on a browser, if it does not, it creates a new XMLHttpRequest object to make

the network request. It sets up event handlers for onload and onerror to handle the response or error then it

opens the XMLHttpRequest with the provided method (defaulting to 'GET') and URL.

V. Charts & Blocks

Table 1 Challenges & Impact Factor
Challenges Factor of Impact

Service Worker Complexity [12, 10] High - Impacts offline functionality, performance, and

reliability

Performance Optimization [15] High - Impacts user experience, engagement, and
retention

Security Concerns [14] High - Impacts user trust, data security, and compliance

Browser Compatibility [10] Medium to High - Impacts reach and user experience

across different browsers

Figure 1 PWA Code

{

 "name": "PWA",

 "short_name": "EPWA",

 "description": "An example Progressive Web App",

 "icons": [

 {

 "src": "/icons/ii.png",

 "sizes": "72x72",

 "type": "image/png"

 },

 {

 "src": "/icons/pp.png",

 "sizes": "512x512",

 "type": "image/png"

 }

],

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 178 | Page

 "start_url": "/index.html",

 "background_color": "#000000",

 "theme_color": "#1368E9",

 "display": "standalone",

 "orientation": "portrait",

 "scope": "/",

 "serviceworker": {

 "src": "/sw.js",

 "scope": "/"

 }

}

Figure 2 Service Worker API Code

const CACHE_VERSION = 'v1';

const CACHE_NAME = 'my-cache-' + CACHE_VERSION;

const urlsToCache = [

 '/',

 '/index.html',

 '/styles/main.css',

 '/scripts/main.js',

 '/images/logo.png'

];

self.addEventListener('install', event => {

 event.waitUntil(

 caches.open(CACHE_NAME)

 .then(cache => {

 return cache.addAll(urlsToCache);

 })

);

});

Figure 3 PolyFill Code

if (!window.fetch) {

 window.fetch = function(url, options) {

 return new Promise(function(resolve, reject) {

 var xhr = new XMLHttpRequest();

 xhr.onload = function() {

 if (xhr.status)= 200 && xhr.status < 300){

 resolve(xhr.response);

 } else {

 reject(new Error(xhr.statusText));

 }

};

 xhr.onerror = function() {

 reject(new Error("Network Error"));

 };

 xhr.open(options.method || 'GET', url);

 for (var header in options.headers || {}) {

 xhr.setRequestHeader(header, options.headers[header]);

 }

 xhr.send(options.body || null);

 });

 };

}

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 179 | Page

VI. Discussion

As the entire viewpoint of web development continues to evolve, Progressive Web Apps (PWAs)

emerge as an important factor, offering the promise of native-like experiences on the web available to all in

terms of responsiveness and legacy support. While the future of PWA development appears to be positive and

inclined towards betterment, it is not without its challenges. Some challenges that were identified include

browser fragmentation and ensuring consistent behavior and performance across diverse browser environments

in terms of responsiveness and legacy browser support. Addressing the complexity of service workers, offline

data synchronization, and background sync mechanisms portrays significant technical hurdles which seem

difficult to mitigate. Moreover, balancing rich functionality with resource constraints, such as limited device

memory and processing power, presents ongoing challenges in PWA optimization. Navigating the complexities

of PWA implementation and discoverability, including optimizing the Web App Manifest, improving SEO, and

streamlining the installation process, requires concerted efforts to enhance PWA visibility and adoption.

In a similar manner, effective strategies are essential to overcome the hurdles/complexities of PWA

development and achieving the full potential of this framework. Some identified strategies include prioritizing

performance optimization through efficient caching strategies (Optimizing service workers), lazy loading

techniques, and responsive design principles. Implementing robust security measures, such as HTTPS adoption,

content security policies (CSP), and encryption protocols, is important to safeguard user data and ensuring trust

in PWAs as discussed and identified in the research.

VII. Conclusion

The future of PWA development holds an overwhelming potential for innovation and advanced

usability, which would be driven by a concerted effort to overcome challenges and capitalize on emerging

opportunities by implementing the most viable strategies to obtain the maximum output out of each PWA. By

embracing effective strategies, leveraging technological advancements, and addressing challenges, developers

can pave the way for the continued evolution of PWAs in terms of improving user satisfaction and shortening

the learning curve to develop effective PWAs, this also offers immersive, reliable, and engaging web

experiences that rival native applications in functionality and performance. Through collaboration between

potential developing parties, user-centric design, and continuous corrective iterations of identified hurdles and

hassles, the journey towards realizing the full potential of PWAs as a transformative force in the web ecosystem

unfolds, shaping the future of digital experiences in the digital age.

References

[1] B. Frankston, "Progressive Web Apps [Bits Versus Electrons]," IEEE Consumer Electronics Magazine, vol. 7, pp. 106-117, March

2018.

[2] D. Sheppard, Beginning Progressive Web App Development, Apress, 2017.

[3] W. Tamire, Evaluation of Progressive Web Application to develop an Offline-First Task Management App, 2019.

[4] V. Aguirre, L. Delía, P. Thomas, L. Corbalán, G. Cáseres and J. Sosa, "PWA and TWA: Recent Development Trends," in Computer

Science – CACIC 2019, Springer International Publishing, 2019, pp. 205-214.

[6] S. Tandel and A. Jamadar, "Impact of progressive web apps on web app development," International Journal of Innovative Research

in Science, Engineering and Technology, vol. 7, no. 9, pp. 9439-9444, 2018.

[7] R. S. Mishra, "Progressive WEBAPP : Review," International Research Journal of Engineering and Technology, vol. 3, no. 6, pp.
3028-3032, 2016.

[8] A. Biørn-Hansen, T. Majchrzak and T.-M. Grønli, "Progressive Web Apps: The Possible Web-native Unifier for Mobile

Development," in Proceedings of the 13th International Conference on Web Information Systems and Technologies, 2017.

[9] T. Ater, Building progressive web apps: bringing the power of native to the browser, O'Reilly Media, Inc, 2017.

[11] D. Hume, "Trends in Web Standards and techniques," VINE, vol. 27, pp. 70-73, 2017.

[12] I. Malavolta, G. Procaccianti, P. Noorland and P. Vukmirovic, "Assessing the Impact of Service Workers on the Energy Efficiency of
Progressive Web Apps," in 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), IEEE, 2017.

[13] T. Majchrzak, A. Biørn-Hansen and T.-M. Grønli, "Progressive Web Apps: the Definite Approach to Cross-Platform Development?,"
in Proceedings of the 51st Hawaii International Conference on System Sciences, 2018.

[14] S. Gupta and B. Gupta, "Cross-Site Scripting (XSS) attacks and defense mechanisms: classification and state-of-the-art,"

International Journal of System Assurance Engineering and Management, vol. 8, pp. 512-530, 2017.

[15] J. Lee, H. Kim, J. Park, I. Shin and S. Son, "Pride and Prejudice in Progressive Web Apps," in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, 2018.

[16] P. Thakur, "Evaluation and implementation of progressive web application," 2018.

[17] I. Malavolta, K. Chinnappan, L. Jasmontas, S. Gupta and K. Soltany, "Evaluating the impact of caching on the energy consumption

and performance of progressive web apps," in Proceedings of the IEEE/ACM 7th International Conference on Mobile Software

Engineering and Systems, 2020.

Progressive Web App (PWA): Optimal Strategies & Challenges

www.ijres.org 180 | Page

[18] J. M. Wargo, Learning Progressive Web Apps, Addison-Wesley Professional, 2020.

[19] C. Love, Progressive Web Application Development by Example: Develop fast, reliable, and engaging user experiences for the web,

Packt Publishing Ltd, 2018.

[20] R. Fransson and A. Driaguine, "Comparing Progressive Web Applications with Native Android Applications," 2017.

[21] K. Farrugia, "Model-theoretic semantics for the web," in Proceedings of the twelfth international conference on World Wide Web -

WWW '03, 2016.

