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Abstract  
The aim of this paper is to review the area of affine spaces. Starting from the notation of vector space, we define 

an affine space by a set of axioms given by H. Weyl and study basic concepts such as affine coordinate systems, 

affine subspaces and affine transformations. After treating various ways of representing affine subspaces  

(including Barry centric coordinates), we discuss convex sets in a real affine space. 
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I. INTRODUCTION  

 

       Affine space [1] deals with linear algebra. The concept of affine spaces is more similar to vector space. In 

vector space the elements were called vectors while in an affine space, the elements are called points. Many 

problems related to linear algebra require geometric facts associated with mutual positions of figures. This can be 

met by using affine spaces. 

 

       In 1748 Euler introduced the term Affine in his book referred to affine geometry for his text space, time and 

matter. He uses affine geometry to introduce vector addition and subtraction at the earliest stages of his 

development of mathematical physics. Weyl’s geometry [2] is interesting historically as having been the first of 

affine geometry to be worked out in detail. 

 

        Geometrically, curves and surfaces are usually considered to sets of points with some special properties, 

living in a space consisting of points.  Typically, one is also interested in geometric properties invariant under 

certain transformation, for e.g. translations, notations, projections, etc. One could model the space of points as a 

vector space but this is not very satisfactory for a number of reasons. One reason is that the point corresponding 

to the zero  vector (0) called the origin, plays a special role, when there is really no reason  to have a privileged 

origin. Another reason is that certain notations, such as parallelism, are handled in an awkward manner. But the 

deeper reason is that vector space and affine space really have different geometries. The geometric properties of 

a vector space are invariant under group of bijective affine maps, and these two groups are not isomorphic. 

Roughly speaking, there are more affine maps than linear maps.  Affine spaces are the right frame work for dealing 

with motions, trajectories, and physical forces, among other things. Thus, affine geometry [3] is crucial to a clean 

presentation of kinematics, dynamics and other parts of physics.  

 

     The concept of affine spaces has its roots in the evolution of geometry, beginning with classical Euclidean 

geometry and evolving into a more abstract framework in the 19th and 20th centuries. The foundation of affine 

spaces can be traced back to Euclidean geometry (c. 300 BCE), as described in Elements by Euclid. While Euclid 

dealt primarily with metric geometry (distances and angles), some ideas, such as parallelism and proportionality, 

hinted at concepts central to affine geometry. The introduction of coordinate geometry by René Descartes and 

Pierre de Fermat in the 17th century laid the groundwork for connecting algebra and geometry. This connection 

was crucial for later developments of affine spaces, as it allowed geometric objects to be represented using 

equations. Mathematicians like Leonhard Euler and Joseph-Louis Lagrange [4] studied transformations that 

preserve certain geometric properties, such as parallelism.  Jean-Victor Poncelet (early 19th century) formalized 

ideas in projective geometry, closely related to affine geometry, as a framework for studying geometric properties 

invariant under projection.  Möbius  [5] introduced barycentric coordinates in 1827, which became a key tool for 

working with points in affine spaces.   Von Staudt [6] distinguished affine geometry from projective geometry 

and emphasized its independence from metric concepts like distance and angle.  Klein’s Erlangen Program 

categorized geometries based on the invariants of transformation groups [7]. Affine geometry was defined as the 

study of properties invariant under affine transformations, such as parallelism. The formalization of vector spaces 



On Affine Spaces  

www.ijres.org                                                                                                                                             130 | Page 

and linear algebra provided a solid foundation for affine spaces. Élie Cartan [8,9] and others expanded the study 

of affine geometry to include connections and curvature in differential geometry. 

 

 

II. DEFINITION AND PROPERTIES 

 

Let X be a collection whose elements are called points, denoted by capital letters A, B, ……….., M. Also let V 

be a vector space of finite dimension over an arbitrary field F. 

 

Definition 1 

A non-empty set X is called an affine space associated to V if there is a mappingof X x X into V, denoted 

by                                                   (𝑃,𝑄) → (𝑃𝑄)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
 

                                                          X x X → V. 

Which has the following properties; 

a) for any three points P, Q, R in X ,we have 𝑃𝑅⃗⃗⃗⃗  ⃗ = 𝑃𝑄 ⃗⃗⃗⃗⃗⃗  ⃗+ 𝑄𝑅⃗⃗⃗⃗  ⃗ 

b) for any P ϵ X and for any α ϵ V there is one and only one point  Q ϵ X such that 𝑃𝑄 ⃗⃗⃗⃗⃗⃗  ⃗= α 

 

Remark 1 

𝑃𝑄⃗⃗⃗⃗  ⃗ is the vector determined by the initial point P and the end point Q. Property a) is known as Chasles’s identity.  

An affine space is real or complex, if the corresponding vector space V is real or  complex. 

 

EXAMPLES  

 Every vector space V defines an affine space (V,V) 

 Let a, b ϵ V considered as points of the set X = V. If we set a b = b-a,  We can easily see that it satisfies all the 

axioms of affine space.   Thus (V,V) is an affine space. 

 R² ,R³ are affine spaces. 

 In general Rⁿ is an affine space for all n. 

 If (X, U) and (Y, V) are affine spaces, then (X x Y, U x V) is again an affine space 

 

Definition 2 

An ordered (n+1) – tuple of points {P₀ , P₁ ………..𝑃𝑛 } in an affine space X is called affine frame if 

the vectors  P₀ P₁ , 1≤i≤n, form a basis of V. The point P₀  is called the origin, and Pᵢ the ith unit point 

of the affine frame 

Definition 3  

The dimension of the affine space (X, V) is the dimension of the associated vector space V. 

Remark 2 

         1. The affine space is finite or infinite dimensional as V is finite or infinite dimensional. 

         2. An affine space of dimension 1 is called an affine line. 

         3. An affine space of dimension 2 is called an affine frame. 

         4. R² is an affine space of dimension 2. 

         5. R³ is an affine space of dimension 3. 

In general Rⁿ is an affine space of dimension n. 

 

Definition 4 

      Let (X, V) be an n dimensional affine space, here we introduce the affine system of coordinates. For that, let 

O ϵ X be an arbitrary point, called origin. Let {e₁  e₂ …….en} be the basis of V. Let M be an arbitrary point in 

X. Define vector 𝑂𝑀 ϵ V called radius vector of  M by  𝑂𝑀 = α₁  e₁ +α₂  e₂ +…….αn en. The ordered collection 

of coefficients (α₁ , α₂ ,…… αn) is called the affine coordinates or Bary centric coordinates of M. Moreover, the 

point O and basis {e₁  e₂ …….en} together are called a frame of reference in space V usually  

denoted by (O: e₁  e₂ …….en). 

 

Remark 3: 

Let N be another point of the same affine space with coordinates {β₁  ,β₂ ……βn} corresponding to the same 

frame of reference. ie; [𝑂𝑁= β₁  e₁ +β₂  e₂ +…….+βnen].Then the vector 𝑀𝑁        can be expressed in terms 

of affine coordinates of M and N by 𝑀𝑁 = 𝑀𝑂 + 𝑂𝑁  

                                                   = − 𝑂𝑀+ 𝑂𝑁  

                                               = 𝑂𝑁 - 𝑂𝑀 
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                                               = [𝛽₁ 𝑒₁  + 𝛽₂ 𝑒₂  + ⋯ … … . . +𝛽𝑛𝑒𝑛] − [𝛼₁ 𝑒₁  + 𝛼₂ 𝑒₂  + ⋯ … … 𝛼𝑛𝑒𝑛] 

                                               = β₁ e₁ +β₂ e₂ +…………+βnen - α₁ e₁ -α₂ e₂ - ………-αnen 

                                               = (β₁ -α₁ )e₁ +(β₂ -α₂ )e₂ +…………….+(βn-αn)en  

 

Thus 𝑀𝑁 has co-ordinates (β₁ -α₁ , β₂ -α₂ ,…….βnαn) ,i.e., one can obtain the coordinates of 𝑀𝑁 by subtracting 

the co-ordinates of respective points with respect to origin. 

 

             The affine co-ordinates of a point depends on the fixed point 0 as well as the considered basis of V. Also, 

if we fix a point 0 and {e₁ , e₂ , ……en}. Then the affine co-ordinate of a point  are unique. As every vector of a 

space is determined by it’s co-ordinates . Similarly every point in an affine space is determined by it’s co-ordinates 

with respect the given frame of reference. Thus the role of frame of reference in an affine space is equivalent to 

the role of a basis in vector space. The vectors {e₁ , e₂ , ……en} can be written in the form ei = 𝑂𝐴𝑖 and thus we 

can write the frame of reference as {O,A₁ ,A₂ ………,An} under the condition {𝑂𝐴1,𝑂𝐴2 , … … . .𝑂𝐴𝑛} form 

a basis of V .[i.e. they must be linearly independent]. In Euclidian geometry, Cartesian co-ordinates are affine co-

ordinates relative to an orthonormal frame, that is an affine frame (o, v₁ , v₂ , ….vn) such that (v₁ , v₂ ,……vn) 

is an orthonormal basis. 

 

Definition 5 

A non-empty subset Y of X is called an affine subspace of X, if for some P ϵ Y, the set of vectors 

 WP(Y) = {𝑃𝑄 : Q ϵ Y}  is a subspace of V. 

This definition is actually independent of the choice of P. 

 

Proposition 1 

 

If for some P ϵ Y ,the set Wp(Y) is a subspace of V, then for any P’ϵ Y, the set Wp’(Y) = {𝑃 𝑄  ;Q ϵ Y} is a 

subspace of V and in fact Wp’(Y) = WP(Y). 

 

Proof  

We shall show that Wp’(Y) = WP(Y). For any Q ϵ Y  

.We have  𝑃 ’𝑄  = 𝑃 𝑃  + 𝑃𝑄 

                           = −𝑃 𝑃 + 𝑃𝑄 [ by prop.2.1], where 𝑃’ 𝑃  , 𝑃𝑄 ϵ WP(Y). 

Since WP(Y) is a subspace of V, we see that 𝑃 ’ 𝑄  ϵ WP(Y). 

This proves 𝑊𝑝,(Y) ⊆ 𝑊𝑝(Y). 

In order to prove, 𝑊𝑝(Y) ⊆ 𝑊𝑝′ (Y). let α ϵ WP(Y). 

If we denote 𝑝𝑝’ ϵ WP(Y) by β, then α+β is in the subspace of WP(Y). 

Let Q’ be a point of Y such that 𝑃𝑄’ = α+β.  

Then, 𝑃𝑄’= 𝑃𝑃’ + 𝑃’𝑄’ 

this implies α+β = β + 𝑃’𝑄’ , 

i.e. 𝑃’𝑄’= α, showing that α is in Wp’(Y). Since α is an arbitrary element of Wp(Y),  

we have Wp(Y) ⊂ WP’(Y). Hence Wp’(Y) = WP(Y) 

 

Definition 6 

 For an affine subspace Y of X, the vector space Wp(Y) which is independent of P ϵ Y, is called the vector space 

associated with Y. we shall denote it simply by W(Y). We define the dimension of Y to be dim W(Y). 

 

Remark 4 

(Y, Wp(Y)) is itself an affine space.Affine subspace is sometimes called an flat. 

 

Definition 7 

 An affine subspace Y dimension 0 is a subset consisting of one single point. An affine subspace Y is called a line, 

plane , hyper plane according as dim Y = 1, 2, n-1, where n = dim X. (For n = 2 ,a line and a hyper plane mean 

the same thing, and for n=3,a plane and a hyper plane mean the same thing). 

 

Proposition 2  

Let Yλ be a family of affine subspaces of an affine space X. If ∩ 𝑌λ is not empty, it is an affine subspace associated 

with ∩ 𝑊λ, where Wλ is the vector space associated with Yλ. 

Proof: 

Let pϵ ∩Yλ.  For any Q ϵ ∩Yλ. 

We have 𝑃𝑄ϵ Wλ ; Ɐ λ. 
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And hence 𝑃𝑄ϵ ∩Wλ. 

Conversely, 

given any α ϵ ∩Wλ, there exists for each λ, a point Qλ ϵ ∩Wλ 

such that 𝑃𝑄𝜆=α. Since there is one and only one point Q ϵ X such that 𝑃𝑄= α ,  

we must have Qλ = Q Ɐ λ.  

Thus ,  

 Q ϵ ∩Yλ and 𝑃𝑄= α , showing that  

 ∩Yλ = {Q ϵ X :𝑃𝑄ϵ ∩Wλ.} 

 That is, ϵ ∩Yλ is an affine subspace associated with ∩Yλ. 

 

Definition 8 

 Let S be a subspace of a vector space V . The coset  v + S = {v + s/ s ϵ S}is called a flat in V with base S and flat 

representative v . We also refer to v + S a translate of S. The set A(V) of all flats in V is called the affine geometry 

of V. The dimension dim (A (V)) of A(V) is defined to be dim(V).While a flat may have many flat representatives, 

it only has one base since x + S = y + T implies that x ϵ y + T and so x + S = y + T = x + T .whence S = T. 

 

Definition 9 

  Two flats X = x + S and Y = y + T are said to be parallel if 𝑆 ⊆ 𝑇 𝑜𝑟 𝑇 ⊆ 𝑆. This denoted by 𝑋‖𝑌. 
 
We will denote subspaces of by the letters S, T…… and flats in V by X, Y……Here are some of the basic 

intersection properties of flats. 

 

Theorem 1:  

 

Let S and T be subspaces of V and let X= x + T and Y = y+ T be flats in V.  

1) The following are equivalent: 

      a) some translate of X is in Y: w + 𝐗 ⊆ Y for some w ϵ V  

      b) some translate of S is in T: w + S ⊆ T for some 𝑣 𝜖 𝑉 

      c) S ⊆ T 

2) The following are equivalent: 

      a) X and Y are translates: 𝑤 + 𝑿 = 𝑌 for some 𝑤 𝜖 𝑉 

      b) S and T are translates: 𝑣 + 𝑆 = 𝑇 for some 𝑤 𝜖 𝑉 

       c) S=T 

3) X ∩ Y≠ 𝟎, S ⊆ T if and only if 𝐗 ⊆ Y 

4) X ∩ Y≠ 𝟎, S = T if and only if X = Y 

 

Affine Combinations 

Let X be a nonempty subset of V. It is well known that  

          1) X is a subspace of V if and only if X is closed under linear combinations, or equivalently, X is closed 

under linear combinations of any two vectors in X.  

           2) The smallest subspace of V containing X is the set of all linear combinations of elements of X. In 

different language, the linear hull of X is equal to the linear span of X. 

 

We wish to establish the corresponding properties of affine subspaces of V, beginning with the counterpart of a 

linear combination. 

 

Definition 10 

Let V be a vector space and let xi ϵ V. 

 A linear combination r1x1 + r2x2 + ………+rnxn where rᵢ ϵ F and ∑ 𝑟ᵢ = 1 is called an affine combination of the 

vectors xᵢ. 

Let us refer to a nonempty subset X of V as affine closed if X is closed under any affine combination of vectors 

in X and two- affine closed if X is closed under affine combinations of any two vectors in . These are not standard 

terms.The line containing two distinct vectors x ,y ϵ V is the set  𝑥𝑦 = { 𝑟𝑥 + (1 − 𝑟)𝑦/𝑟 𝜖 𝐹} = 𝑦 + <x - y> 

of all affine combinations of x and y. Thus, a subset X of V is two-affine closed if and only if X contains the line 

through any two of its points. 

Projective Geometry 

 

 If 𝑑𝑖𝑚(𝑉) = 2, the join (affine hull) of any two distinct points in V is a line. On the other hand, it is not the case 

that the intersection of any two lines is a point, since the lines may be parallel. Thus, there is a certain asymmetry  



On Affine Spaces  

www.ijres.org                                                                                                                                             133 | Page 

between the concepts of points and lines in V. This asymmetry can be removed by constructing the projective 

plane. Our plan here is to very briefly describe one possible construction of projective geometries of all 

dimensions. By way of motivation, let us consider Figure 1 

 

 
Figure 1 

 

Note that H is a hyper plane in a 3-dimensional vector space V and that 0 does not belongs to H . Now, the set 

A(H) of all flats of V that lies in H is an affine geometry of dimension 2. (According to our definition of affine 

geometry, H must be a vector space in order to define A(H). However, we hereby extend the definition of affine 

geometry to include the collection of all flats contained in a flat of V )The above figure shows a one-dimensional 

flat X and its linear span < 𝑿 >as well as a zero-dimensional flat Y and its span < 𝑌 >. Note that, for any flat X  

in H , we have 𝑑𝑖𝑚(< 𝑿 >) = 𝑑𝑖𝑚(𝑿) + 1 .Note also that L₁  and L₂  are any two distinct lines in H, the 

corresponding  

planes and have the property that their intersection is a line through the origin, even if the lines are parallel. We 

now ready to define projective geometries. Let V be a vector space of any dimension and let H be a hyper plane 

in V not containing the origin. To each flat in X in H , we associate the subspace of <𝑿 > of V generated by X. 

Thus, the linear span function P: A(H)→S(V) maps affine subspaces X of H to subspaces < 𝑿 > of V . The span 

function is not surjective: Its image is the set of all subspaces that are contained in the base subspace K of the flat 

H.The linear span function is one-to-one and its inverse is intersection with H, P-1U=U∩ 𝐻 for any subspace not 

contained in K.The affine geometry A(H) is, as we have remarked, somewhat incomplete. In the case dim(H)=2 , 

every pair of points determines a line but not every pair of  lines determines a point. Now, since the linear span 

function P is injective, we can identify A(H) with its image P(A(H)) , which is the set of all subspaces of V not 

contained in the base subspace K . This view of A(H) allows us to “complete” A(H) by including the  base 

subspace K . In the three-dimensional case of above Figure, the 2 base   plane, in effect, adds a projective line at 

infinity. With this inclusion, every pair   of lines intersects, parallel lines intersecting at a point on the line at 

infinity. This two-dimensional projective geometry is called the projective plane 

 

III. CONCLUSION  

Affine spaces became central to physics, computer science, and engineering, especially in the study of 

kinematics, computer graphics, and machine learning. Concepts such as affine connections (important in general 

relativity and differen Affine spaces played a role in the broader shift in mathematics toward abstraction and 

structural approaches in the late 19th and early 20th centuries, exemplified by the works of David Hilbert and 

Nicolas Bourbaki.tial geometry) and affine manifolds emerged, extending the idea of affine spaces to more 

complex structures. Affine spaces serve as a bridge between the intuitive geometry of the ancient world and the 

abstract, algebraic frameworks of modern mathematics. By generalizing Euclidean spaces without the need for a 

fixed origin, affine spaces capture essential geometric properties such as parallelism and proportionality, 

providing a versatile foundation for numerous mathematical and practical applications. Their development, rooted 

in the evolution of geometry from the work of Euclid to the innovations of modern algebra, reflects the progression 

of mathematical thought toward abstraction and generality. Affine spaces are not only a fundamental concept in 

geometry but also a critical tool in fields such as physics, computer graphics, optimization, and machine learning. 

As research continues to uncover new applications and connections, affine spaces remain an indispensable 

structure in both theoretical exploration and real-world problem-solving. Their timeless relevance underscores the 

enduring power of mathematical abstraction in shaping our understanding of the universe. 
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