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Abstract  
The main challenge in Blind Super Resolution (BSR) lies in the unknown and diverse degradation models. 

Traditional methods often rely on paired low-resolution (LR) and high-resolution (HR) image samples for 

supervised training, which can be costly and difficult to obtain in real-world applications. To address this issue, 

we propose a Based LR Kernel Prior (BLKP) model for unsupervised kernel estimation and high-resolution 

image restoration.The BLKP model consists of two main components: the Pre-Trained Kernel Model (PTKM) 

and the Prior Kernel Estimation (PKE) module. PTKM employs a pre-trained neural network to estimate 

multiple potential blur kernels from LR images, providing kernel priors for the PKE module. The PKE module 

further refines the kernel estimation by integrating the PTKM-generated priors, observed LR images, and 

currently estimated HR images, optimizing the restoration process under dynamic degradation conditions.The 

proposed framework offers several key advantages. First, it eliminates the dependence on paired LR-HR 

samples, enabling unsupervised kernel estimation and image restoration, thus enhancing adaptability and 

flexibility in complex degradation scenarios. Second, its modular design allows seamless integration with 

existing image restoration models, providing an efficient and scalable solution for BSR tasks. Experimental 

results demonstrate that BLKP delivers superior restoration performance across various blur kernel 

environments, highlighting its potential and value in real-world applications. 
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I. INTRODUCTION  

Deep learning provides a promising approach to addressing the Blind Super-Resolution (BSR) 

problem, where the goal is to reconstruct a high-resolution (HR) image from a low-resolution (LR) observation 

with an unknown blur kernel. This process is inherently non-convex and ill-posed, making it highly challenging. 

To tackle this, most learning-based methods adopt a supervised learning framework that leverages paired LR-

HR samples and prior image knowledge to alleviate non-convexity and ill-posedness. However, these methods 

face significant limitations due to their reliance on pre-defined labeled datasets.First, acquiring high-quality 

paired LR-HR samples is both costly and time-consuming. Second, in certain applications such as fast-moving 

targets (e.g., satellites or airplanes) or medical imaging (e.g., cardiac motion), obtaining paired data is nearly 

impossible. This motivates the search for methods that bypass the need for labeled training data. 

Existing BSR methods fall into two major categories: explicit degradation strategies (typically 

supervised) and implicit degradation strategies (often unsupervised). Explicit Degradation Methods: These 

methods rely on explicitly designed constraints or prior knowledge to model the degradation process. They 

apply prior assumptions, such as blur kernel models or noise models, to restore HR images. While effective for 

known degradation models, their reliance on predefined priors limits their adaptability to complex, unknown, or 

varying degradation processes. Implicit Degradation Methods: These methods train end-to-end deep learning 

networks to learn the degradation process from data. They avoid explicit physical models by learning data-

driven priors from large-scale paired samples. Although effective, they suffer from limited generalization to new 

blur kernels or unknown degradation scenarios. They also require extensive paired data and high computational 

resources, limiting their scalability. 

To overcome these challenges, we propose a novel unsupervised BSR method called the Based LR 

Kernel Prior (BLKP) model. BLKP estimates blur kernels and restores HR images without paired LR-HR 

samples, making it practical for real-world applications. We use a pre-trained neural network to estimate 

multiple potential blur kernels from LR images. These kernels serve as prior inputs for further refinement. PKE 

adjusts and optimizes the blur kernel estimation based on the PTKM-generated kernel priors, the observed LR 

image, and the current HR estimate from the Image Restoration (IR) model. This dynamic process refines the 

kernel estimation adaptively during restoration. 
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The main contributions are summarized as follows: 

1. The BLKP model proposed in this paper eliminates the dependence on paired samples by generating kernel 

priors and dynamically estimating fuzzy kernels, achieving unsupervised kernel estimation and image 

restoration. This feature of not requiring paired training data significantly improves the applicability of the 

model in practical scenarios, especially when paired data is difficult to obtain, which is of great value. 

2. The core innovation of BLKP model lies in its modular design, especially PTKM and PKE. PTKM 

generates multiple possible estimated blur kernels from low resolution images through a simple pre trained 

network, providing initial conditions for subsequent kernel estimation. The PKE module further combines 

observed low resolution images with restored high-resolution images to optimize and adjust the blur kernel. 

This modular design enables the BLKP model to serve as a universal kernel estimation tool, easily 

embedding into existing image restoration models, providing great flexibility and scalability. 

 

II. METHOD  

2.1 Overview 

The degradation model for blind super-resolution can be mathematically expressed as: 

𝑦 = ( 𝑥 ⊗ 𝑘 )↓𝑠
+ 𝑛 (1) 

where y represents the LR image, x represents the HR image, ⊗ denotes the convolution operation, k is 

the blur kernel, ↓𝑠 is the downsampling operation with a scaling factor s, and n is noise. The BSR problem can 

be formulated as a Maximum a Posteriori (MAP) problem: 

max
𝑥,𝑘

𝑝(𝑦|𝑥, 𝑘)𝑝(𝑥)𝑝(𝑘) (2) 

where 𝑝(𝑦|𝑥, 𝑘) represents the likelihood of the observed LR image y, and 𝑝(𝑥) and 𝑝(𝑘)  are the 

priors for the HR image and the blur kernel, respectively. The image prior 𝑝(𝑥) has been extensively studied 

and designed over the past decade, typically using deep learning or other content-based models to capture the 

structure and patterns of images. In contrast, the study of blur kernel priors 𝑝(𝑘) has only recently gained 

attention. Due to the relatively low cost of obtaining blur kernel samples and the efficiency of their training 

phase, the study of blur kernels has become a popular direction in blind super-resolution tasks. 

we propose BLKP model consisting of PTKM and PKE. In this model, the PTKM module is 

responsible for generating preliminary kernel priors, while the PKE module uses these priors from PTKM to 

further estimate the blur kernel. Let t= t = 1、2…T represent the number of iterations between these two 

modules, where in each iteration, the estimated blur kernel 𝑘𝑡 and the high-resolution image 𝑥𝑡 represent the 

outputs of the t-th iteration. 

 

 
 

Figure 1: Overview of BLKP-DIP Method 

 

Through this alternating iteration method, the BLKP model is able to estimate the blur kernel based on 

the latest HR and LR images in each iteration, and gradually restore high-resolution images. This method fully 

utilizes the information in LR images to generate kernel priors, while optimizing the blur kernel in the absence 

of paired data, effectively solving the problem of blind super-resolution. 

 

2.2 Based LR Kernel Prior 

The main function of the BLKP model is to dynamically estimate the blur kernel in each iteration by 

combining the content information of the latest HR image and the initial LR image. This process not only 

effectively captures the features of image blur, but also provides accurate blur kernel prediction in image 

restoration tasks, in order to further restore clearer images. The BLKP model consists of two key modules: 

PTKM and PKE. These two modules work together in the iterative training of the model to optimize the 

prediction process of the fuzzy kernel. 

Specifically, the PTKM module is mainly responsible for providing preliminary blur kernel estimation 

based on LR images. This module relies on a pre trained deep neural network, which learns the relationship 

between blur kernels and image content by pre training on a large number of images, thus providing a 
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preliminary blur kernel estimate for each low resolution image. Due to the fact that image blurring is a 

degradation process, the initial estimation value of PTKM's output blur kernel may not be completely accurate, 

but it provides a reasonable starting point for subsequent blur kernel optimization. In the subsequent training 

process of the model, PTKM will fine tune based on the output results of the PKE module to improve the 

accuracy of prediction. The PKE module is based on a flow based kernel prior model, which optimizes by 

constraining the fuzzy kernel prior. PKE optimizes based on the fuzzy kernel estimation provided by PTKM and 

the degraded image results of this iteration in each iteration. PKE integrates this information and continuously 

adjusts the fuzzy kernel estimation values to better match the fuzzy features in the actual image degradation 

process. Specifically, PKE introduces prior knowledge and physical constraints of the kernel during the 

optimization process to ensure that the estimated fuzzy kernel has a more reasonable physical interpretation, 

avoiding unreasonable fuzzy kernel estimation and improving the stability and robustness of the entire model. 

The overall process of the PTKM is as follows: First, the low-resolution image y and the high-

resolution image from the previous iteration 𝑥𝑡−1 are input into the model. These are processed through the 

kernel model to obtain an initial estimate of the blur kernel 𝑘′. Specifically, this paper introduces an output 

module that can generate multiple initial blur kernel estimates, such as 𝑘1
′，𝑘2

′，𝑘3
′  etc.Next, the process enters 

the weight calculation module. The initial blur kernels 𝑘1
′ ，𝑘2

′ ，𝑘3
′  are convolved with the high-resolution 

image  𝑥𝑡−1 from the previous iteration to generate multiple predicted low-resolution images. These predicted 

images are compared with the actual low-resolution image y, and the error is calculated. Based on this error, a 

weight map is generated. This weight map is used to adjust the blur kernels, and ultimately, the initial blur 

kernels are fused through a weighted combination to obtain the optimized blur kernel 𝑘𝑒. 

 

 
Figure 2: Overview of PTKM 

 

The Kernel Model mainly consists of two steps: First, feature extraction: by using the ResBlock 

module of MAConv to extract features from low resolution images, learning the fuzzy patterns and relationships 

between channels in the image. Second, fuzzy kernel reconstruction: based on the extracted features, a 

preliminary fuzzy kernel estimation is constructed to provide initial conditions for subsequent fuzzy kernel 

optimization. The detailed workflow and structure of this module are shown in Figure 3, with a focus on how to 

extract effective fuzzy features through the ResBlock module using MAConv, and reconstruct the fuzzy kernel 

based on these features. Specifically, in the final Reshape, this article not only outputs one fuzzy kernel to 

increase the likelihood of observing excellent fuzzy kernels. 

 

 
Figure 3: Specific model diagram of Kernel Model 
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2.3 Prior Kernel Estimation 

In the PKE model, the estimation of the blur kernel relies on a lightweight network 𝐺𝑘 based on flows, 

which learns and optimizes the prediction of the blur kernel through its parameters Φ𝑘 . Specifically, the 

network's output at the ttt-th iteration is given by: 

𝑘𝑡 = 𝐺𝑘(Φ𝑘
𝑡 ) (3) 

where 𝐺𝑘 is a lightweight network, Φ𝑘
𝑡  represents the optimized parameters at the t-th iteration, and 𝑘𝑡 

is the output blur kernel. The initial input to the network 𝐺𝑘 is random noise, allowing the network to start from 

a random initialization and gradually converge to the correct blur kernel estimate through learning and iterative 

optimization.To ensure the accuracy of the estimation, the network incorporates two key consistency checks 

during the optimization process: data consistency check and blur kernel consistency check. These checks help 

refine the estimated blur kernel and ensure its validity at each iteration. 

 

 
Figure 3: Specific model diagram of PKE 

 

2.4 Depth image prior model 

 

DIP[1] is a deep learning method for image restoration that captures low-level image statistical features. 

It begins with a fixed random noise input and estimates the HR image. Unlike traditional deep learning methods 

that typically rely on large-scale pre-trained datasets, the core advantage of the DIP method is that it does not 

require any pre-existing training data. Instead, it only depends on the image to be restored for performing the 

restoration task. This enables DIP to efficiently and quickly restore images, even when data is limited. 

The DIP method optimizes the network parameters 𝛷𝑥  progressively so that the generated image 

matches the target image under a specific metric. During the restoration process, the network learns both low-

level and high-level features of the image, including texture, structure, edges, and other visual information. By 

continuously optimizing its parameters, the network generates a high-resolution image that gradually aligns with 

the features of the target image. In this process, the network not only captures local image features but also 

models the global structure of the image, achieving high-quality image restoration. 

 

III. EXPERIMENTS 

It was observed that the rerun column bottom stream temperature has greater effect on the linear 

alkylbenzene yield than the temperature variation of the top stream. At higher temperature of both streams , 

lower percentage yield  of average wt. %  of  linear alkylbenzene was obtained with that of the top stream being 

the lowest at 87.5% as against  93.3% for the bottom stream. The highest linear alkylbenzene yield of 99.4%was 

recorded at bottom stream temperature of 280oC and pressure of 115Kpa. 

Based on the widely adopted kernel assumption, we conducted experiments on anisotropic Gaussian 

kernels, as shown in Figure 4. The kernel size was set to (4s + 3) × (4s + 3). For the Gaussian kernel, the width 

range was set to [0.175s,2.5s], the rotation angle range was set to [0,π], and the scale factor was s=4. We 

synthesized LR images with random kernels using Equation 4.1 for testing on five popular public benchmark 

datasets, including Set5 [4], Set14 [52], BSD100 [30]. We compared these kernels based on Peak Signal-to-

Noise Ratio (PSNR) and evaluated the HR images based on both PSNR and Structural Similarity Index (SSIM) 

[2]. 
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Table 1 Comparison with advanced algorithms on various datasets (PSNR/SSIM) (bolded for optimal 

results) 

 
Set5 Set14 BSD100 

Double-DIP[3] 20.99/0.5578 18.31/0.4426 18.57/0.3815 

DASR[4] 27.37/0.7859 25.43/0.6591 25.11/0.6129 

DIP-FKP[5] 27.77/0.7914 25.65/0.6764 25.15/0.6354 

BSRDM[6] 27.81/0.8029 25.35/0.6859 25.61/0.6526 

DCLS[7] 27.50/0.7948 25.68/0.6639 25.34/0.6169 

DiffBIR[8] 25.15/0.6468 23.01/0.5935 23.88/0.5586 

DARM[9] 26.25/0.6818 24.19/0.6187 24.29/0.5898 

DIP-DKP[10] 28.03/0.8039 25.98/0.6878 25.66/0.6531 

DIP-BLKP 29.22/0.8337 26.11/0.6936 25.75/0.6446 

 

From Table 1, it can be seen that DIP-BLKP is the most outstanding super-resolution method in the 

table, with PSNR and SSIM of 29.22/0.8337, 26.11/0.6936, and 25.75/0.6446 on Set5, Set14, and BSD100 

datasets, respectively, ranking first, demonstrating significant advantages on various datasets. Specifically, in 

the Set5 dataset, DIP-BLKP achieved the highest values in both PSNR and SSIM metrics, indicating its 

excellent ability to restore details and maintain structure in small-scale, high-quality image restoration tasks. In 

the more complex Set14 dataset, DIP-BLKP still outperforms other methods with a performance of 

26.11/0.6936, and even with a wider variety of image types, it can accurately restore high-resolution images. In 

the most challenging BSD100 dataset, DIP-BLKP also performed well, with PSNR and SSIM metrics of 25.75 

and 0.6446, respectively. Only the SSIM metric performed slightly worse, indicating that its generalization 

ability and robustness in complex scenarios are in a leading position. 

When compared with other methods, the advantages of DIP-BLKP are more pronounced. Compared 

with traditional methods such as Double DIP and DASR, it has significantly improved both PSNR and SSIM 

metrics, especially on the complex dataset BSD100, with PSNR improvement exceeding 7.18 and SSIM 

improvement of about 0.2631, demonstrating its significantly improved reconstruction ability. Compared with 

its closer competitor DIP-DKP, DIP-BLKP also performs better, with a 1.19 increase in PSNR on the Set5 

dataset and a 0.006 increase in SSIM on the Set14 dataset, indicating further optimization of its model 

capabilities under the same framework. At the same time, DIP-BLKP can not only restore high-quality image 

details, but also maintain the overall structural consistency of the image well, avoiding problems of excessive 

smoothness or texture loss. 
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