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Abstract  
Pell’s equation, also called Pell-Fermat equation is a Diophantine equation of the form x2 − dy2 = 1 , where d is 

a given positive non-square integer and integer solutions are sought for x and y. The aim of this paper is to discuss 

about some concepts of Pell’s equation, examples and also some applications. 
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I. INTRODUCTION  

 

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to 

study the integers, rational numbers and their generalization [1]. Pell’s equation is an important topic of algebraic 

number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields. The 

history of this equation is long and involved a number of different approaches before a definite theory was found. 

There were partial patterns and quite effective methods of finding solutions, but a complete theory did not emerge 

untill the end of the 18th century. 

 

Pell’s equation, also called Pell-Fermat equation [2] is a Diophantine equation of the form x2 − dy2 = 1 , 

where d is a given positive non-square integer and integer solutions are sought for x and y. In Cartesian 

coordinates, the equation is represented by a hyperbola; solutions occur whenever the curve passes through a point 

with integer x and y coordinates, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange [3] 

demonstrated that, as long as n is not a perfect square, Pell's equation has an endless number of different integer 

solutions. These solutions can be used to precisely approximate the square root of n using rational values of the 

type x/y [4].     

        

The history of Pell's equation is a fascinating journey across different cultures and centuries, highlighting 

contributions from Indian, Islamic, and European mathematicians [5]. Despite its association with John Pell, the 

equation predates him by many centuries.  It was first studied extensively in India starting with Brahmagupta who 

found an integer solution to   

                                                                           92x2 + 1 = y2 

 

Then Baskara II who developed a method called “Chakravala method” to solve this equation and 

Narayana who found the solutions in certain difficult cases [6]. The contributions of the “Greek and Hindu 

Mathematics” to Pell’s equation was aptly brought out by a popular work of B L Vander Waerden [7]. Fermat [8] 

was also interested in the Pell’s equation and worked out some of the basic theories regarding Pell’s equation. It 

was Lagrange who discovered the complete theory of the equation x 2 −dy2 = 1. The name of Pell’s equation arose 

from Leonhard Euler mistakenly attributing Brouckers solution of the equation to John Pell.  Mathematicians in 

the Islamic Golden Age, such as Al-Khwarizmi [9,10], contributed to algebra and number theory, but Pell's 

equation was not a central focus in Islamic mathematics. However, their work helped transmit mathematical ideas, 

including methods that were precursors to solving quadratic forms. Fermat rediscovered the equation in the 17th 

century while studying Diophantine equations. He challenged contemporaries to solve specific cases, such as 

x2−61y2=1x2−61y2=1, which he claimed was difficult but solvable. Wallis [11,12] included Pell's name in the 

context of quadratic equations, mistakenly attributing significant work to him.  Pell himself had no notable 

contributions to this equation, but the misattribution stuck, and the equation became known as "Pell's equation." 

Euler [13,14] made significant strides in formalizing solutions to Pell's equation using continued fractions.  He 

acknowledged the earlier work of Indian mathematicians but developed the methods within the European 

mathematical framework. Lagrange provided a complete proof that continued fractions can solve Pell's equation.  

His work made the connection between number theory and Pell's equation systematic and rigorous. Pell's equation 
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remains a central topic in number theory, influencing areas like continued fractions, algebraic number theory, and 

cryptography [15,16]. It exemplifies how ancient mathematical problems have evolved and interconnected over 

time. 

 

II. DEFINITION AND PROPERTIES 

 

Definition 1  

A Diophantine equation is a polynomial equation usually involving two or more unknowns such that the only 

solutions of interest are the integer ones. A linear Diophantine equation of the form ax + by = c, where a, b, c are 

integers and has the solution if and only if (a, b)|c. 

 

Definition 2 

 If a and b are integers and there is some integer c such that a = bc, then we say that b divides a or b is a factor or 

a divisor of a and denote b|a.  

 

Theorem 1  

Every composite numbers greater than one can be expressed as a product of primes and this factorization is unique. 

It is also known as Unique Factorization Theorem or the Unique Prime Factorization. 

 

Definition 3 

 Given two integers a and b with b > 0 there exist unique integers q and r satisfying a = qb + r The integers q and 

r are called quotient and remainder respectively in the division of a by b . 

 

Definition 4 

The greatest common divisor (m, n) of integers m and n is the largest integer which divides both m and n. 

If m and n are relatively prime then (m, n) = 1 

 

Lemma 1 

If prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a and b 

 

Definition 5 

For a positive d integer that is not a perfect square, an equation of the form x2 − dy2 = 1is called Pell’s 

equation. We are interested in x and y that are both integers, and the term “solution” will always mean an integral 

solution. The obvious solutions (x, y) = (±1, 0), are called the trivial solutions. They are the onlys olutions where 

x = ±1 or y = 0 (separately). Solutions where x > 0 and y > 0 will be called positive solutions. Every non-trivial 

solution can be made into a positive solution by changing the sign of x or y. 

 

We don’t consider the case when d is a square, since if d = c2 with c ∈ Z then x 2 − dy2 = x 2 − (cy) 2 and 

the only squares that differ by 1 are 0 and 1, so x2 − (cy)2 = 1 =⇒ x = ±1 and y = 0. Thus Pell’s equation for square 

d only has trivial solutions. In this article, we’ll show how solutions to Pell’s equation can be found, we’ll discuss 

an elementary problem about polygonal numbers that is equivalent to a specific Pell’s equation, describes how to 

create new solutions of Pell’s equation if we know one non-trivial solution and we will see how all solutions can 

be generated from a minimal non-trivial solution. Also we discuss a generalized Pell’s equation is introduced, 

where the right side is not 1. 

  

Example 1  

Two positive solutions of x2 − 2y2 = 1 are (3, 2) and (17, 12),since 2y2 + 1 is a square when y = 2 and 12, 

where it has values 9 = 32 and 289 = 172.Here let (x, y) be the solution. Now we write the Pell’s equation as x2 = 

dy2 + 1. Here d = 2, so the equation becomes x2 = 2y2 + 1. Now we give values for y.Take y = 1, 2, 3, ....When y 

= 1 then the equation becomes x2 = 3 which is not a perfect square. When y = 2 then the equation becomes x2 = 9 

which is a perfect square. Then x = 3. Therefore the solution is (3, 2) Now to find the other solutions take number 

α n = (x+y√d)n  where n = 2, 3, 4, ... Then if we take different values for n, then we get the solution as the 

coefficients of x.  

 

                            α = 3 + 2√2,                           d = 2 

                            αn = (3 + 2√2)n  

                            α2 = (3 + 2√2)(3 + 2√2),       n = 2 

                                = 9 + 3 · 2√2 + 3 · 2√2 + 8 

                                = 17 + 12√2 
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∴(17, 12) is the other solution. 

 
Figure 1: Solution of Pell’s Equation 

 

Theorem 2 

For all d ∈ Z + that are not squares, the equation has a non-trivial solution. 

 

Proof. 

This theorem is our hunting license to search for solutions by tabulating dy2+1 until it takes a square 

value. We are guaranteed this search will eventually terminate, but we are not assured how long it will take. In 

fact, the smallest positive solution of x2 − dy2 = 1 can be unusually large compared to the size of d. The table 

illustrates this if we compare the smallest positive solution were d = 12, 13 and 14. As more extreme examples, 

see the smallest positive solutions below when d = 61 or 109 compared with nearby values of d. 

 

While Lagrange was the first person to give a proof that Pell’s equation for general (non-square) has a 

non-trivial solution. 100 years earlier Fermat claimed to have a proof and challenged other mathematicians in 

Europe to prove it. In one letter he wrote that anyone failing this task should at least try to find solutions to x2 − 

61y = 12 and x2 − 109y2 = 1 , where he said he choose small coefficients “pour ne vous donner pas trop de peine” 

(so you don’t have too much work). He clearly was being mischievous. If Fermat had posed his challenge to 

mathematicians in India then he may have gotten a positive response; a non-trivial solution to x 2 − 61y 2 = 1 had 

already been known there for 500 years. 

 

Triangular Square Numbers 

 

A positive integer n is called triangular if n dots can be arranged to look like an equilateral triangle. The 

first six triangular numbers are 1 (a generate case),3,6,10,15 and 21. In the pictures below, the shading shows how 

each triangular number is built from the previous one by adding a new side. 

 

 
Figure 2: Triangular Square Numbers 
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Figure 3: Rectangular Square Numbers 

 

For k ≥ 3 , a k-gonal number is a positive integer n for which n dots can be arranged to look like a regular k-gon. 

The first six square and pentagonal numbers, corresponding to k = 4 and k = 25, are shown below. Both 

sequence start with 1 as a generate case.  

 
Figure 4: Pentagonal Square Numbers 

 

A formula for the n th square number Sn is obvious. Sn = n 2. To get the formula for the nth triangular and 

pentagonal numbers Tn and Pn, the few values suggest how to write them as a sum of terms in an arithmetic 

progression (which are their real definitions). 

 

                                           Tn = 1 + 2 + 3 + ...... + n =∑ 𝑘𝑛
𝑘=1   

 

                                          Pn = 1 + 4 + ...... + (3n − 2) = ∑ (3𝑘 − 2)𝑛
𝑘=1  

 

 This works for square numbers too. 

 

                                        Sn = 1 + 3 + ..... + (2n − 1) = ∑ (2𝑘 − 1)𝑛
𝑘=1  

 

The mth triangular number is m(m+1)/2 and the nth square number is n2. Using the formula for the sum of terms 

in an arithmetic progression, 

 

                                     Tn =n(n + 1)/2 

and 

                                    Pn =n(3n − 1)/2 

 

With these formulas we fill the table below of the first 10 triangular, square and pentagonal numbers. 

 

Besides the common value 1, we see 36 is both triangular and square: 36 = T8 = S6. Call a positive integer a 

triangular square number if it is both Tm for some m and Sn for some n. Finding these numbers is the same as 

solving a particular Pell’s equation. 

 

Theorem 3 

Triangular square numbers correspond to solutions of x2 − 2y2 = 1 in positive integers x and y. 

Proof.  
Using the formulas for Tm and Sn, 

 

                                    Tm = Sn ⇐⇒m(m + 1)/2= n2 

                                                 ⇐⇒ m2 + m = 2n2 

                                                        ⇐⇒ (m +12)2 −14= 2n2 
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                                                        ⇐⇒ (2m + 1)2 − 1 = 2(2n)2 

                                                        ⇐⇒ (2m + 1)2 − 2(2n)2 = 1 

 

Because every step is reversible, finding triangular square numbers is equivalent to solving x2 − 2y2 = 1 in positive 

integer x and y where x = 2m + 1 is odd and y = 2n is even T x−1/ 2 = S y/2  . (While we want x = 2m + 1 with m ≥ 

1, we can say x > 0 instead of x ≥ 3, because the only solution of  x2 − 2y2 = 1 with x = 1 has y = 0, which is not 

positive). 

 

Including the constraint that x is odd and y is even in the correspondence between triangular square numbers and 

positive solutions of x2 − 2y2 = 1 is unnecessary because they are forced by the equation x2 − 2y2 = 1. Indeed, 

writing theequation as x2 = 2y2 + 1 shows x2 is odd. Then x = 2m + 1 for some integer m, and feeding that into 

the Pell’s equation makes 4m2 + 4m + 1 − 2y2 = 1, so y2 = 2m2 + m. Thus y2 is even, so y is even. 

  

III. CONCLUSION  

Our aim was to take a note on Pell’s Equation by its breath of coverage. As part of algebraic number 

theory, Pell’s equation has applications to computer science, factoring of large integers and cryptography. It is 

important for certain areas of research in cryptography, although I do not know of any current implementations 

of it that are actually used in practice. Pell’s equation was primarily an exercise in pure mathematics and 

developing number theory. However, the full importance of it in those fields would not become apparent until the 

development of algebraic number fields. This project work helps us to know more about Pell’s Equation and its 

application. 
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