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Abstract 

Graphene which is a single-layer carbon atom arranged in a hexagonal lattice has emerged as a revolutionary 

material with exceptional properties. Its extraordinary electrical conductivity, high mechanical strength and 

optical transparency have opened up new possibilities in various fields including electronics, energy storage 

and biomedicine. This review delves into the recent advancements in the synthesis, properties and applications 

of graphene and its derivative known as graphene oxide (GO). Different synthesis techniques, such as 

mechanical exfoliation, chemical vapor deposition, liquid-phase exfoliation and reduction of graphene oxide 

were discussed. The unique structural, electronic, optical, mechanical and thermal properties of graphene and 

GO were explored, highlighting their potential for various applications. 
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I. Introduction 

Graphene is a two-dimensional, ultra-thin sheet of carbon atoms arranged in a hexagonal lattice structure 

which began as a theoretical prediction in the 1940s through 2004 [1,2], Andre Geim and Konstantin Novoselov 

successfully isolated graphene experimentally which led to a groundbreaking achievement that earned them the 

Nobel Prize in physics in 2010 [3,4]. As the thinnest known material, with a thickness of just one atom, it has 

attracted significant interest across disciplines such as materials science and chemistry [5-8]. This discovery 

ignited intense research interest in its exceptional properties, including extraordinary electrical conductivity, 

high mechanical strength and optical transparency [9,10]. Graphene oxide (GO), a derivative of graphene has its 

roots in the 19th century [4,11]. It is produced by oxidizing graphite, introducing oxygen-containing functional 

groups onto its surface [12-15]. While GO lacks the pristine electronic properties of graphene, its hydrophilic 

nature and abundant functional groups make it versatile for various applications [16,17]. The material’s high 

electron mobility, mechanical resilience and tunable optical properties in recent years have positioned it at the 

forefront of advanced material research [18]. Research on graphene and GO has accelerated focusing on 

advanced synthesis techniques, property enhancement and other professional applications[19-22]. This review 

provides a comprehensive summary of recent advancements in the synthesis, properties and applications of 

graphene and graphene oxide. It  identified new synthesis methods that enhance scalability, cost-efficiency and 

environmental sustainability as well as to examine developments in the structural, electronic, thermal and 

chemical properties that make graphene materials unique. This review explored emerging applications across 

fields such as energy storage, flexible electronics, environmental remediation and biomedicine, emphasizing the 

transformative potential of graphene and graphene oxide in addressing contemporary technological challenges. 

It also identified major trends and existing challenges that will guide future research and industrial application 

of these materials. 

 

II. Graphene Synthesis 

The synthesis of graphene can be carried out in different ways such as mechanical exfoliation, chemical 

vapor deposition, liquid phase exfoliation and reduction of graphene oxide [23-27]. The process of synthesizing 

graphene from these methods is explained below involving either bottom-up (from atoms to nano) or top-down 

(from bulk to nano) methodologies [28-30]. The bottom-up methodologies include growth on SiC and on metals 

by precipitation, molecular beam epitaxy and chemical vapor deposition [31, 32]. The top-down methodologies 

include dry and/or liquid-phase exfoliation, unzipping of nanotubes and chemical exfoliation [33, 34]. 
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2.1.1 Mechanical Exfoliation 

Mechanical exfoliation, often referred to as the "Scotch tape method," is a straightforward technique for 

isolating graphene flakes from bulk graphite [35-37]. This method involves repeatedly peeling layers of graphite 

using adhesive tape, eventually resulting in single- layer or few-layer graphene flakes [38-39]. The first step is 

the selection of High-quality graphite, such as highly oriented pyrolytic graphite (HOPG) in order to ensure 

optimal results [40-42]. Adhesive tape is pressed onto the graphite surface to adhere to the top layer and then 

peeled off, carrying with it thin layers of graphite [43]. This process is repeated multiple times to obtain thinner 

and thinner layers. The graphene flakes produced on the tape can be transferred onto a desired substrate, such as 

silicon dioxide or glass [44, 45]. This method can produce high-quality graphene with minimal defects and 

is versatile for obtaining various graphene thicknesses, it suffers from low yield and inconsistent flake size, 

making it unsuitable for large-scale production. The mechanical exfoliation technique, while effective in 

producing high-quality graphene, is limited by its low yield and the difficulty in controlling the number of layers  

[46, 47]. However, recent advancements in techniques and equipment have led to improved control over the 

exfoliation process [35, 48]. The use of specialized adhesive tapes and optimized peeling angles has resulted in 

higher yields and larger graphene flakes [49]. The development of automated exfoliation systems has further 

enhanced the efficiency and reproducibility of this technique [50]. Mechanical exfoliation remains a valuable tool 

for fundamental research, its scalability limitations continue to drive the exploration of alternative techniques 

for large-scale graphene production [51]. 

 

 
Figure 1: Step by step of a mechanical exfoliation process: (a) adhesive tape is pressed against a HOPG surface 

so that the top few layers are attached to the tape (b), (c) the tape with crystals of layered material is pressed 

against a surface of choice and (d) upon peeling off, the bottom layer is left on the substrate. 

 

2.1.2 Chemical Vapor Deposition (CVD) 

 Chemical Vapor Deposition (CVD) is a versatile technique for synthesizing high-quality, large- area 

graphene films [52-54]. In this method, a carbon-containing gas precursor, such as methane or ethylene, is 

introduced into a reaction chamber [55, 56]. A suitable substrate, like copper foil or silicon carbide, is heated to 

a high temperature, typically around 1000°C, to initiate the thermal decomposition of the gas precursor [57]. 

Large area uniform few-layer graphene (FLG)/graphite films can be produced by dissolving carbon atoms 

decomposed from methane in a metal substrate at high temperatures and transferring them to glass slides for 

transparent thin conducting electrodes [58]. After cooling, the graphene film can be transferred to a desired 

substrate [59]. This method offers several advantages, including the ability to produce large-area, continuous 

graphene films with high electrical conductivity and mechanical strength [60]. However, it requires specialized 

equipment and high-temperature processes, which can limit its versatility and scalability. CVD is a reliable 

technique for the large-scale production of high-quality graphene [52, 54]. CVD is a poly-parametric process 

involving the carbon source, the type of the substrate, the auxiliary gases and the dynamic temperature–pressure 

relationships [61]. Recent advancements in CVD techniques include the use of catalyst-free growth and low-

temperature processes. These advancements have led to the production of high-quality, large-area graphene films 

with improved electronic and mechanical properties [52]. 
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 Figue 2: Graphene synthesis via chemical vapor deposition (CVD): (a) Chemical vapor deposition reactor. (b) 

Growth mechanism of graphene on the copper substrate via deposition. (c) Schematic illustration of the transfer 

process of the graphene sheet; spin coating with a polymethylmethacrylate (PMMA) polymer, etching copper 

with FeCl₃, graphene on a PMMA support is transferred onto the Si/SiO₂ target substrate and PMMA is removed 

by acetone. 

 

2.1.3 Liquid Phase Exfoliation 

 Liquid-phase exfoliation (LPE) is a versatile technique for producing large quantities of high- quality 

graphene [24,62]. The dispersion of graphite flakes to produce graphene involves overcoming the van der Waals 

forces between the graphene layers [63]. This is typically achieved by dispersing the graphite in a suitable solvent 

and applying mechanical energy through methods such as sonication or high-shear mixing [64]. Sonication and 

shear mixing are effective methods for exfoliating graphite into graphene by introducing significant energy into 

the system, which helps to overcome van der Waals forces [63].  

Surfactants and polymers are being utilized to stabilize graphene dispersions and prevent reaggregation 

[65]. Post-treatment methods, such as centrifugation and thermal annealing, are employed to purify and 

functionalize graphene [66-68]. Most commercially available bulk graphene is made by milling graphite into 

powder and then subjecting the resulting particles to mechanical forces in a liquid solution to separate the powder 

into flakes, for example, by using sonication; flakes not shown to scale. The flakes are then sorted according 

to their size and thickness [35, 69].  

  

 
Figure 3: Liquid phase exfoliation of grapheme 

 

2.1.4  Reduction of Graphene Oxide 

Reduced graphene oxide (rGO) is a derivative of graphene oxide (GO) that has been partially reduced 

to restore its conductive properties [70]. This process involves the removal of oxygen- containing functional 

groups, such as hydroxyl, epoxy and carboxyl groups, from the GO structure [71]. Reduction methods include 

chemical reduction using strong reducing agents like hydrazine hydrate, sodium borohydride and vitamin C [72-

74]; thermal reduction at high temperatures in an inert atmosphere; hydrothermal reduction in water at high 

temperature and pressure; and microwave reduction using microwave energy [75]. The choice of reduction 

method depends on factors such as the desired properties of the rGO, the scale of production and environmental 

considerations [76]. While chemical reduction is a common method, it can introduce impurities into the rGO and 

damage the graphene structure [78]. Thermal reduction can produce high-quality rGO but requires high 

temperatures. Hydrothermal and microwave reduction offer more environmentally friendly and efficient 

alternatives [79]. Microwave reduction also provides a rapid and efficient method for large scale production 

[80]. 
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Figure 4: Reduction Process of Graphene Oxide 

 

III. Properties of Graphene and Graphene Oxide Structural Properties 

Graphene, a single-layer carbon atom arranged in a two-dimensional (2D) honeycomb lattice [81], 

possesses a highly ordered crystalline structure  [82]. This perfect two-dimensional lattice contributes to its 

exceptional electronic and mechanical properties [83]. In contrast, graphene oxide (GO) has a more disordered 

structure due to the presence of oxygen-containing functional groups [84]. These functional groups disrupt the 

conjugation of the carbon atoms, leading to a decrease in electrical conductivity [85].  

 

3.1 Electronic Properties 

Graphene is a zero-gap semiconductor with unique electronic properties [86-88]. Its linear band 

dispersion near the Dirac point results in high carrier mobility and low electrical resistivity  [89]. This makes 

graphene a promising material for high-speed electronic devices [90-91]. Graphene exhibits extraordinary 

electronic properties, including high carrier mobility and low electrical resistivity  [92]. GO, on the other hand, 

is an insulator due to the disruption of the π- electron conjugation by oxygen-containing functional groups [93, 

94]. However, by reducing GO, it is possible to restore its electrical conductivity to some extent, making it 

suitable for various electronic applications [95].  

 

 
Figure 5: Graphene band structure 

 

 3.2 Optical Properties 

 Graphene exhibits excellent optical properties, including high transparency and strong light absorption 

in the visible and near-infrared regions [96]. This unique combination of properties makes graphene suitable for 

various optoelectronic applications, such as transparent conductive films, photodetectors and optical modulators. 

Graphene's unique optical properties, including its high transparency and tunable optical conductivity, make it a 

promising material for optoelectronic devices [97]. GO, due to its high optical absorption in the visible region, 

can be used as a saturable absorber for mode-locked lasers and optical limiters  [98].  
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Figure 6: Graphene optical transparency 

 

3.3 Mechanical Properties 

Graphene been one of the strongest materials known has a Young's modulus exceeding that of steel  

[99]. This exceptional mechanical strength is attributed to its strong covalent bonds and two- dimensional 

structure [6]. It exhibits some mechanical properties which includes high strength and stiffness [100]. GO, while 

not as strong as graphene, still exhibits significant mechanical strength, particularly when incorporated into 

composite materials [101].  

 

3.4 Thermal Properties 

Graphene is an excellent thermal conductor [102], with a thermal conductivity higher than that of copper 

[103]. This high thermal conductivity is due to the strong in-plane covalent bonds and the efficient phonon transport 

in the graphene lattice [104], making it a promising material for thermal management applications [105]. GO, 

due to its disordered structure, has lower thermal conductivity compared to graphene [106]. However, it can still 

be used as a thermal interface material as well as thermal management applications [107]. 

 

 
Figure 7: Graphene thermal conductivity 

 

IV. Application of Graphene and Graphene Oxide 

Graphene and Graphene Oxide has been explored in numerous areas of application which include but not limited 

to Electronics and Optoelectronics, Energy Storage, Composite Materials, Biomedical Applications, Water 

Filtration, Corrosion Prevention and Energy Conversion [108-110] 

4.1 Electronics and Optoelectronics 

Graphene's exceptional electrical conductivity and optical properties make it ideal for various electronic and 

optoelectronic applications, including high-speed transistors, sensors, flexible electronics and photodetectors 

[111-112] 

4.2 Energy Storage 

Graphene's large surface area and high electrical conductivity make it a promising material for energy storage 

devices such as batteries and supercapacitors. It can also enhance the performance of fuel cells by improving the 

efficiency of electrocatalytic reactions [113-115]. 

4.3 Composite Materials 

Graphene can be incorporated into various composite materials to enhance their mechanical, electrical and 

thermal properties. Graphene-reinforced polymers and metal matrix composites have shown significant 

improvements in strength, stiffness and conductivity [116-118]. 

4.4 Biomedical Applications 

Graphene and graphene oxide have potential applications in the biomedical field, including drug delivery, tissue 

engineering and biosensors. Their unique properties, such as large surface area and biocompatibility, make them 

suitable for these applications [20, 119] 
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4.5 Water Filtration 

Graphene-based membranes can effectively filter water, removing contaminants and impurities. This technology 

has the potential to address global water scarcity and pollution issues [120] 

.4.6 Corrosion Prevention 

Graphene coatings can provide excellent corrosion protection for metal surfaces, extending their lifespan and 

reducing maintenance costs [121-122] 

 

V. Conclusion 

This paper reviewed recent advances on graphene and graphene oxide synthesis, properties and its 

application across various industries. Innovations in fabrication methods have enhanced scalability and quality, 

while the unique properties of these materials continue to drive breakthroughs in electronics, energy storage and 

environmental applications. The versatility of graphene-based materials positions them as pivotal components in 

future technological developments. 
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