
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 12 Issue 10 ǁ October 2024 ǁ PP. 159-165

www.ijres.org 159 | Page

Attribute and Inter-Attribute domain constraints in fuzzy object

oriented database based on hedge algebra

Cong-Hao Nguyen
Hue University, Vietnam

Corresponding Author: Cong-Hao Nguyen, email: nchao@hueuni.edu.vn

Abstract

In this paper, We proposed attribute and inter-attribute domain constraints on the classes of a fuzzy object-

oriented database model based on hedge algebra. In this approach, the verification of whether an object satisfies

the constraints according to specific conditions and whether the attributes are bound together or not is at level k

(kZ+), where k is the similarity level determined for each fuzzy attribute that matches the data constraints in the

model, and the implementation of direct data matching on linguistic values is more intuitive and simpler than

other approaches.

Keywords: Hedge algebra, Fuzzy object-oriented database model, attribute constraints, inter-attribute

constraints

--- ----------

Date of Submission: 14-10-2024 Date of acceptance: 29-10-2024

--- ----------

I. INTRODUCTION

When designing a fuzzy object-oriented database, in addition to designing objects and object classes,

designing constraints is a very important step. Designing and specifying constraints such as requirements that

need to be satisfied between attributes within a class or attributes between classes [9-10]. For example, when

storing information about lecturers in a university, some constraints can be used on the value domain of lecturer

attributes such as citizen identification number, lecturer code, age, teaching and scientific research capacity... in

which the value of citizen identification number, lecturer code must not be duplicated, the age of the lecturer is

relatively young, the teaching and scientific research capacity of the lecturer is very good. The existence of

constraints is a reality, so the problem is to include them in data models to make the data more meaningful and

contextual [1]. Constraints are also used to set standards for updating and processing data to ensure consistency,

correctness and completeness.

In general, an object-oriented database is desirable to users when it satisfies all possible constraints on

the classes of that database, creating a flexibility and semantic completeness in terms of data storage and

manipulation. On the contrary, there will be limitations on the data if a database does not satisfy or does not

provide constraints. The structure of the paper is presented in 5 parts, in addition to the introduction, part 2 presents

some basic knowledge about hedge algebra and fuzzy object-oriented databases based on hedge algebra, parts 3

and 4 present some data constraints such as value domain constraints and constraints between attributes, part 5

presents the conclusion and future research directions of the paper.

II. RELATED WORK

2.1. Hedge algebra

Hedge algebra is an approach to discovering the algebraic structure of the value domain of linguistic

variables [9-10]. According to this approach, each value domain of the linguistic variable X can be understood as

an algebra. A X = (X, G, H, ≤), where Dom (X) = X is the domain of linguistic values of the linguistic variable X

generated from the set of generating elements G = {c-, c+} with the action of the hedges in H =H- H+, is a

semantic ordering relation on X, it is induced from the natural qualitative meaning of the word. When some special

elements are added, the hedge algebra becomes an abstract algebra X=(X, G, H, , , ≤), where , are operators

that take the limit of the set of elements generated when subjected to successive actions of hedges in H.

Alternatively, if we denote H(x) = {h …hp x/h1 , … , hp H} then x = inf H(x) and x = sup H(x). Thus, the

hedge algebra X built on the foundation of a hedge algebra AX = (X, G, H, ≤), where X = H(G), by adding two

operators , . Then X = X Lim(G) with Lim(G) being the set of limiting elements: for all x Lim(G), there

exists uX such that x = u or x = u. These limiting elements are added to the hedge algebra X to make the new

calculations meaningful and so X = (X, G, H, , , ≤) is called a fully linear hedge algebra. The semantic

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 160 | Page

quantification function (), the fuzziness measure function (fm), the sign function (Sgn) and the properties of the

hedge algebras can be found in published works [6-8].

2.2. Similarity level k

When defining a neighborhood of level k we want such representative values to be interior points of the

neighborhood of level k. Therefore, we define the similarity of level k as follows: we always assume that each set

H- and H+ contains at least 2 hedges. Let Xk be the set of all elements of length k. Based on the fuzzy intervals of

level k and the fuzzy intervals of level k+1 we informally describe the construction of a partition of the domain

[0, 1] as follows:

i) With k = 1, the level 1 fuzzy intervals include I(c-) and I(c+). The level 2 fuzzy intervals on the interval

I(c-) are I(hp c-) = I(hp-1c-) = … = I(h2c-) = I(h1c-) = A(c-) = I(h-1 c-) = I(h-2 c-) = …= I(h-q+1 c-) = I(h-q c-) . Then, we

construct a level 1 similarity partition consisting of the following equivalence classes: S (0) = I(hp c-), S(c-)= I(c-)

\[I(h-qc-) I(hpc-)]; S(W) = I(h-qc-) I(h-qc+); similarly we have S(c+) = I(c+)\[I(h-qc+) I(hp c+)] and S (1) = I(hpc+).

ii) Similarly, with k = 2, we can construct a partition of similarity classes of level 2. In a similar way, we

can construct partitions of similarity level k at any. However, in practical applications, we can restrict the

consecutive hedges acting on the primitive elements c- and c+ to some integer k *. The canonical values and the

fuzzy values are said to have similarity of level k if their representative values lie in the same similarity class of

level k.

Example 2.1. Consider the relational schema U = {CODE, FULLNAME, NUMBER_ISI, NUMBER_PRO}

with the meaning: Lecturer code (CODE), Lecturer's full name (FULLNAME) are 2 explicit attributes, Number

of articles published in prestigious international journals (NUMBER_ISI), Number of topics at all levels chaired

(NUMBER_PRO) are 2 attributes with fuzzy values. In which DNUMBER_ISI = [0, 20] and DNUMBER_PRO = [0, 10].

LDNUMBER_ISI and LDNUMBER_PRO have the same set of linguistic values with the generator set {0, low, W, high, 1}

and the hedge set {less, possibly, more, very}. Although the considered fuzzy attributes have the same set of

linguistic values, their quantitative semantics are different.

i) For the attribute NUMBER_ISI

We have: fm(high) = 0.4, fm(low) = 0.6, (possibly) = 0.25, (less) = 0.3, (more) = 0.2 and (very) =

0.25. We partition the interval [0, 2 0] into 5 intervals similar to level 1: fm(very high) 20 = 0.25 0.4 20 =

2. Therefore, S(1) 20 = (18, 20]; (fm(possibly high) + fm (more high)) 20 = (0.25 0.4 + 0.2 0.3) 20 =

3.2 and S(high) 20 = (14.8, 18]; (fm(less low) + fm(less high)) 20 = (0.3 0.6 + 0.3 0.4) 20 = 6 and S(W)

 20 = (8.8, 14.8]; (fm(possibly low) + fm(more low)) 20 = (0.25 0.6 + 0.2 0.6) 20 = 5.4 and S(low) 20

= (3.4, 8.8], S(0) 20 = [0, 3.4].

ii) For the attribute NUMBER_PRO

We have: fm(high) = 0.35, fm(low) = 0.65, (possibly) = 0.2, (less) = 0.25, (more) = 0.35 và (very) =

0.2. We partition the interval [0, 10] into 5 intervals similar to level 1: fm(very high) 10 = 0.2 0.35 10 = 0.7.

Therefore, S(1) 10 = (9.3, 10]; (fm(possibly high) + fm(more high)) 10 = (0.2 0.35 + 0.35 0.35) 10 =

1.925 and S(cao) 10 = (7.375, 9.3]; (fm(less low) + fm(less high)) 10 = (0.25 0.65 + 0.25 0.35) 10 = 2.5

and S(W) 10 = (4.875, 7.375]; (fm(possibly low) + fm(more low)) 10 = (0.25 0.65 + 0.35 0.65) 10 = 3.9

and S(low) 10 = (0.975, 4.875], S(0) 10 = [0, 0.975].

2.3. Fuzzy object-oriented database

In Fuzzy Object Oriented Database [9], the following four cases can be used to distinguish object class

relationships:

i) Clear class and clear object: this case is similar to that in object-oriented databases, meaning that an

object belongs or does not belong to a class with certainty.

ii) Sharp class and fuzzy object: class is precisely defined and has precise boundaries, while object is fuzzy

because its attribute values can be fuzzy. In this case, object can be a member of class with some degree of

belonging .

iii) Fuzzy class and clear object: similar to case ii), objects can belong to classes with different degrees of

belongingness k. For example, a class of young students and a 20 year old student.

iv) Fuzzy class and fuzzy object: in this case, the object also belongs to the class with the degree of

belonging level k.

For each fuzzy linguistic value x, we will define an interval representation for x. In practice, the number of

hedges in linguistic values is finite so there exists a positive integer k * such that 0 <|x|k*, xX. For any xX, set

j=|x|, for every integer k, with 1 k k * , the minimal neighborhood k of x denoted by Omin,k (x) is defined as follows:

if k = j then Omin,k(x) = Ik+1(h-1x) Ik+1(h1x), if 1 k < j then Omin,k(x) = Ij(x) and if j+1 k k * then Omin,k(x) =

Ik+1(h-1y)Ik+1(h1y). Therefore, we represent fuzzy linguistic data according to the following definition:

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 161 | Page

Definition 2.1. Given x X C, an interval representation of x is a set IRp(x) of intervals defined: IRp(x) =

{Omin,k(x)|1 k k*}.

Consider X as a hedge algebra, with H+= {h1 ,..., hp } and H- = {h-1 ,..., h-q }, where p, q > 1. Let H1 be the

set of negative hedges, H2 be the set of positive hedges in the sense that when acted upon it will change the

meaning stronger than the number of hedges in H1, that is, the sets H1 and H2 include: H1 = {hi , h-j | 1 i [p/2],

1 j [q/2]}, H2 = {hi , h-j | [p/2] i p, [q/2] j q}. Let Pk+1(Hn) = {I(hiy)| y Xk , hi Hn }, with n = 1, 2. Two

intervals I(x) and I(y) in Pk+1(Hn) are called connected if there exist consecutive intervals in Pk+1(Hn) ranging from

I(x) to I(y). This relation will divide Pk+1(Hn) into connected components. We have that, for each y Xk , Pk+1(H1)

is divided into clusters of the form {I(hi y)hi H1}. Furthermore, I(h-1y) (y) I(h1y) or I(h1y) (y) I(h-1y)

we have (y) {I(hiy)| hi H1}. We cluster the fuzzy intervals of Pk+1(H2). Suppose Xk = {xs| s = 0,…, m-1}

consists of m elements arranged in a sequence such that xi xj if and only if i j. Set and

. Note that and . The clusters generated from the fuzzy intervals of Pk+1(H2)

are of three types: the cluster to the left of x0: I(hi x0)| hi H2
+}; the cluster to the right of xm-1:{I(hi xm-1)| hi H2

+};

the cluster between xs and xs+1 with s = 0,…, m-2, depend on Sgn(hp xs) and Sgn(hp xs+1) as follows: C ={I(hixs),

I(hj
’xs+1)| hiH2

+, hj
’H2

-}, if Sgn(hpxs) =+1 and Sgn(hpxs+1) = +1; C ={I(hixs), I(hj
’xs+1)| hiH2

+, hj
’H2

+}, if

Sgn(hpxs) = +1 and Sgn(hpxs+1) = -1; C ={I(hixs), I(hj
’xs+1)| hiH2

-,hjH2
-}, if Sgn(hpxs) = -1 and Sgn(hpxs+1) = +1;

C ={I(hixs), I(hj
’xs+1)|hiH2

-,hjH2
+}, if Sgn(hpxs) =-1 and Sgn(hpxs+1) = -1.

The set of all clusters is denoted by C. Because {Sk(C)| CC} is a partition on the reference domain, it

defines an equivalence relation and we will call it the k -level similarity relation. Due to the nature of the partition,

for each value x of the attribute, there exists a unique cluster C such that (x)Sk(C) and we define the k- level

similarity interval as follows:

Definition 2.2. For each C in C, we call the similarity interval of level k corresponding to C as: Sk (C) =

{I(u)|I(u) C}, then Sk(x) = Sk(C).

Definition 2.3 . Given any object o on the attribute set {A1, A2 ,..., An} of class C, X is a hedge algebra, for

each k, 1 k k *, Sk is a similarity relation of level k on the attribute domain Ai of class C. Then, for every u

X , the values o(Ai) and u are said to be equal at level k, denoted o(Ai)= ku, if and only if Omin,k(o(Ai)) Sk(u).

Definition 2.4 . Given any two objects o1 , o2 on the attribute set {A1 , A2 ,..., An} of class C, X is a hedge

algebra , for each k, 1 k k * , Sk is a similarity relation of level k on the attribute domain Ai of class C. Then:

i) Two values o1(Ai) and o2(Ai) are said to be equal to level k, denoted o1(Ai) = k o2(Ai), if and only if there

exists an equivalence class Sk(u) of the similarity relation Sk such that Omin,k(o1(Ai)) Sk(u) and Omin,k(o2(Ai))S

k(u).

ii) Two values o1(Ai) and o2(Ai) are said to differ by degree k, denoted o1(Ai) k o2(Ai), if there does not

exist an equivalence class Sk(u) of the similarity relation Sk such that Omin,k(o1(Ai)) Sk(u) and Omin,k(o2(Ai)) S

k(u).

Definition 2.5. Let C = {c1, c2,.., cn} and O = {o1 , o2 ,…, om} be the set of constraints and the set of objects

on class C, respectively. For each constraint ci C that one or more objects oj O is fully defined through its

syntax and semantics as follows:

Syntax of a constraint:

𝑐<𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠>
<𝑛𝑎𝑚𝑒> [] in <class name> [reference to <class name*>]

[satisfied with level of <k>]

Where: <name>: name of the constraint; <properties>: Set of properties of the class participating in the

constraint; [] : with either an empty value; or a set of properties; or a numeric value, range or fuzzy value

depending on each given constraint; <class name>: name of the class participating in the constraint; [reference to

<class name*>]: name of the class that references the constraint if any; [satisfied with level of <k>]: Level k that

satisfies the constraint (if any).

III. ATTRIBUTE DOMAIN CONSTRAINTS

According to the hedge algebra approach, when considering the relationship between classes/objects or

objects that satisfy fuzzy query conditions, that object belongs to a class or satisfies fuzzy query expressions with

a level k. certain definition. With this idea, from the data constraint perspective, we also consider objects that

satisfy constraints with a level k due to the fuzziness expressed in the given constraints. For example, as a

constraint for the lecturer object, the salary attribute is relatively high and the number of published scientific

research papers is quite large. Therefore, the satisfaction of this constraint should only be evaluated by a certain

level depending on the fuzzy interval of level k. To evaluate level k like that, we must represent the values on the

attributes of the objects participating in the constraint as fuzzy intervals at each level. Then, determining the

objects satisfying the constraint is done by matching the attribute values of the objects participating in the

 HHH 22

 HHH 22

 2Hh q

 2Hhp

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 162 | Page

constraint at each level k with the usual matching method, this is a prominent advantage of the hedge algebra

approach.

For fuzzy attributes, the data types are also based on the basic data types as above to allow the

representation of fuzzy information. Some specific proposed constraints are as follows:

“not null” constraint: For this constraint, the attribute on the specified object must always have a defined

and valid value. To represent this constraint, we use the syntax: 𝐶{𝑖𝑑}
𝑛𝑜𝑡_𝑛𝑢𝑙𝑙

in <class name> (3.1)

Where, id describes the attribute to which the “not_null” constraint is applied on the class named <class

name>.

“null” constraint: For this constraint, the property on the object can contain null value as opposed to the

“not_null” case above. To represent this constraint we use the syntax: 𝐶{𝑖𝑑}
𝑛𝑢𝑙𝑙in <classname>. (3.2)

“Value” constraint: To represent this constraint, we use the syntax: 𝐶{𝑖𝑑}
𝑣𝑎𝑙𝑢𝑒[] in <class name> Satisfied

with level of <k>. (3.3)

Where, is a value constraint that can be an explicit value, an interval value, and an opaque linguistic value

to limit the value domain of the attribute specified as id and k is a given level indicating the constraint satisfaction

level of the object on the class named <class name>.

Example 3.1. For example, we constrain the Salary attribute of the Lecturer class to values such as about

10,000,000 or 15,000,000 Salary 20,000,000 or "very high" then we have the corresponding constraint

representations as follows:

 𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [about 10,000,000] in Satisfied Lecturer with level of <k>

 𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [15,000,000 Salary 20,000,000] in Lecturer Satisfied with level of <k>

 𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [very high] in Satisfied Staff with level of <k>.

If the level k equality relation (k Z+) occurs, then there exists an equivalence class Sk(x)Sk , where Sk is

an equivalence relation of level k on the attribute id such that the minimum neighbor represents the value of the

attribute under consideration and the value constraint belong to the same equivalence class Sk(x).

Algorithm 3.1. Check whether an object o satisfies the value constraint c with a given level k.

Input: Object o and attribute id to be considered. Constraint c is represented from (3.3), k Z+ is given to

indicate the constraint satisfaction level of object o, Sk is an equivalence relation on the domain of attribute id.

Output: Object o either satisfies the value constraint or not.

Method:

1. Begin

2. Constructing the hedge algebra AXid for the attribute id includes constructing the fuzzy parameters,

hedges and generators.

3. Determine the domain that defines the id attribute as D(id) = (minid, maxid) where minid, maxid are the

smallest and largest values of id.

4. Calculate Omin,k(o(id)) and Omin,k ()

5. if (Omin,k(o(id)) = kOmin,k()) then

6. return “object o satisfies constraint c with level k”

7. else

8. return “object o does not satisfy constraint c with level k”

9. End.

Algorithm 3.1 is correct, algorithm complexity is O(1).

IV. INTER-ATTRIBUTE DOMAIN CONSTRAINTS

In reality, there are constraints of the form “If two employees o1, o2 have relatively good working ability,

then the salary of o1, o2 is relatively high”, it is seen that there is a relationship between the teaching ability and

salary of o1, o2. If we consider that the relationship between the teaching ability and salary of two lecturers o1, o2

is a constraint in a fuzzy object-oriented database, we call this constraint a constraint between attributes on class

C containing these two attributes, or in other words, it is a form of fuzzy data dependency between two attributes.

Definition 4.1. Let A = {A1, A2,.., Am} be a set of attributes and C be a class defined on that set of attributes.

Consider X, Y A. We say that the object o C satisfies the inter-attribute constraint X, Y denoted X ⥲𝑘Y, read

as Y, the fuzzy inter-attribute constraint X with level k: if oi C, oi (X) =k o(X) then oi (Y) =k o(Y).
The syntax for inter-attribute constraints is:

𝐶{𝑌1, 𝑌2,…, 𝑌𝑚}
𝑖𝑛𝑡𝑒𝑟_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

[X1, X2,.., Xn] in <class name> Satisfied with level of <k> (4.1)

In which, X = {X1, X2,.., Xn} and Y = {Y1, Y2 ,.., Ym} are the sets of attributes on the class named <class

name>, required the level of satisfaction of the constraint between X and Y.

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 163 | Page

Algorithm 4.1. Algorithm to check whether an object o C satisfies the given inter-attribute constraint X,

Y with a given level k Z + or not.

Input: A = {A1, A2,…, Ap} is the set of attributes on class C, the object o C to be considered. C contain

the set of objects o1, o2,…, oq} and X, Y A, X = {X1, X2,…, Xn}, Y = {Y1, Y2 ,..,Ym}, m, n p; the inter-attribute

constraint is shown at (4.1), k Z+.

Output: Object o satisfy the inter-attribute constraint X ~> k Y with level k Z+ or not.

Method:

1. Begin

2. Construct the hedge algebras for the fuzzy attributes in X and Y, assuming the sets X, Y have s, r fuzzy

attributes in X and Y respectively as S = {X1, X2,…, Xs}, R = {Y1, Y2,…,Yr}.

3. Determine the value domain of the Xi attributes S and Yi R is D(Xi) = (minXi, maxxi) and D(Yi) =

(minYi, maxYi) where (minXi, maxXi) and (minYi, maxYi) are the minimum and maximum values of Xi. Yi,

respectively.

4. i: = 1; stop: = false;

5. while (i q-1) and (stop = false) do

6. begin

7. if SatisfyX(oi(X) =k o(X)) then

8. begin

9. if SatisfyY(oi(Y) =k o(Y)) then Stop:=false;

10. else Stop: =true;

11. end i: = i+1;

12. end

13. if (i q-1) then return “o does not satisfy the constraint”

14. else if (i = q-1) then return “o satisfies the constraint”

15. End.

//Building function SatisfyX, function SatisfyY

1. Begin

2. r: = 1; Stop:=false;

3. while (r n) and (stop = false) do

4. begin

5. if (Xr is an explicit attribute) then

6. begin

7. if oi (Xr) = o(Xr) then stop:= false

8. else stop: = true;

9. end

10. else if (Xr is a fuzzy attribute) then

11. begin

12. Find Omin,k(oi (Xr)) and Omin,k (o(Xr));

13. if (Omin,k(oi(Xr)) =k Omin,k(o(Xr))) then stop:=false

14. else stop:= true;

15. end

16. r: = r+1;

17. end

18. if (r = n) then return SatisfyX: = true

19. else return SatisfyX: = false;

20. End.

//Building the SatisfyY function

1. Begin

2. z: = 1; Stop:= false;

3. while (z m) and (stop = false) do

4. begin

5. if (Yz is an explicit attribute) then

6. begin

7. if oi (Yz) = o(Yz) then stop:= false

8. else stop:= true;

9. end

10. else if (Yz is a fuzzy attribute) then

11. begin

12. Find Omin,k(oi(Yz)) and Omin,k (o(Yz));

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 164 | Page

13. if (Omin,k(oi(Yz)) =k Omin,k (o(Yz))) then stop:=false

14. else stop:= true;

15. end

16. z: = z+1;

17. end

18. if (z = m) then return SatisfyY: = true

19. else return SatisfyY: = false;

20. End.

With the object o that needs to satisfy the constraints between the proposed attributes, algorithm 4.1 need

to go through the remaining t-1 objects on that class. Algorithm 4.1 is correct, ensuring stopping and stopping

when the function SatisfyX(oi(X) =k o(Y)) satisfies and the function SatisfyY(oi(Y) =k o(Y)) does not satisfy or has

gone through all the objects of the class. The algorithm complexity of the SatisfyX and SatisfyY functions is O(n)

and O(m) respectively. Therefore, the complexity of algorithm 4.1 is O(t), with n, m t.

Corollary 4.1: Given Object o ∈C, A = {A1, A2,…, Am} is the attribute set of class C. Let X,Y ⊆ A with Y

fuzzy inter-attribute constraint at level k, denoted X ⥲𝑘Y, we have:

i) With X being fuzzy or clear. If object o satisfies constraint X ⥲𝑘Y at level k then o also satisfies constraint

X ⥲𝑘′Y at all levels k’Z+: k’ < k.

ii) With X it is clear. If object o does not satisfy constraint X ⥲𝑘Y at level k then o also does not satisfy X

⥲𝑘′Y at all levels k’Z+: k’ > k.

Proof.

i) Because object o satisfies constraint X ⥲𝑘Y level k , we have ∀oi∈ 𝐶, oi ≠o: oi (X) =k o (X) ⇒ oi (Y) =k o

(Y) or oi (Xi) =k o(Xi)⇒ oi (Yi) =k o(Yi) (*), ∀ Xi ∈X, 1≤ i ≤n , n is the number of attributes in X and ∀Yi ∈Y, 1≤ i

≤m , m is the number of attributes in Y. For the left side of (*), for each oi(Yi) =k o(Xi), if oi (Xi) =ko(Xi) then oi (Xi)

=k' o (Xi), ∀k' < k. Similarly for the right side of (*), for each oi (Yi) =k o(Yi) then we have oi(Yi) =k' o(Yi), ∀k' < k.

Therefore, for oi (Xi) =k o(Xi)⇒ oi (Yi) =k o(Yi) we have oi(Xi) =k' o(Xi)⇒ oi (Yi) =k' o(Yi) with ∀k' < k or oi(X) =k'

o(X)⇒ oi (Y) =k' o(Y) with ∀k' < k if o satisfies the constraint X ⥲𝑘′Y for all levels k’Z+: k’ < k.

ii) Because object o does not satisfy constraint X ⥲𝑘Y level k, we have ∃oi∈ C, oi ≠o: oi (X)=k o(X)⇒ oi

(Y) ≠k o (Y) or at least one attribute Yi exists ∈ 𝑌: oi (Xi) =k o(Xi)⇒ oi (Yi) ≠k o(Yi)(**),∀ Xi ∈ fK, 1≤ i ≤n , n is the

number of attributes in X. For the right side of (**), if oi (Yi) ≠k o(Yi) then oi(Yi) ≠k' o(Yi), ∀k' > k. Similarly for the

left side of (**), since X is a clear key (∀ Xi ∈X is an explicit attribute) so for oi (Xi) =k o(Xi) then oi (Xi) =k' o(Xi), ∀

Xi ∈X, ∀k' > k . Therefore, ∀k' > k , ∃oj ∈ C , oj ≠o : oj (Xi) =k' o(Xi)⇒ oj(Yi) ≠k' o(Yi),∀ Xi ∈X, ∃Yi ∈ 𝑌 in other

words ∃oj ∈ C, oj ≠o : oj (X) =k' o(X)⇒ oj (Y) ≠k' o(Y) so o also does not satisfy X ⥲𝑘′Y ,k’Z+: k’> k where X is

a clear key.

Corollary 4.2: Given Object o ∈C, A = {A1, A2 ,…, Am } is the attribute set of class C. Let X,Y, 𝑍 ⊆ A. We

have:

i) If object o satisfies constraint X ⥲𝑘Y level k then o also satisfies constraint XZ ⥲𝑘YZ level kZ+.

ii) If object o satisfies constraints X ⥲𝑘Y and Y ⥲𝑘Z with level k then o also satisfies constraint X ⥲𝑘Z

with level k’Z+: k’ > k.

Proof.

i) Because object o satisfies constraint X ⥲𝑘Y level k, then ∀oi ∈ C, oi ≠o: oi (X) =k o(X)⇒ oi(Y) =k o(Y).

Furthermore, with oi(XZ) =k o(XZ) and oi(X) =k o(X) implies: oi(Z) =k o(Z) (*).

From oi(Y) =k o(Y) and oi(Z) =k o(Z) implies: oi(YZ) =k o(YZ) (**). Thus, from (*) and (**) we have ∀oi ∈

C, oi ≠o: oi (XZ) =k o(XZ)⇒ oi (YZ) =k o(YZ) or we say that object o satisfies constraint XZ ⥲𝑘YZ level kZ+.

ii) Because object o satisfies constraints X ⥲𝑘Y and Y ⥲𝑘Z level k should be ∀oi ∈ C, oi ≠o: oi (X) =k

o(X)⇒ oi(Y) =k o(Y) (*) and oi(Y) =k o(Y)⇒ oi (Z) =k o(Z) (**). From (*) and (**) we have ∀oi ∈ C, oi ≠o: oi(X)

=k o(X)⇒ oi(Z) =k o(Z) or we say that object o satisfies constraint X ⥲𝑘Z at level kZ+.

V. CONCLUSION

In the process of designing fuzzy data structures, determining the types of data constraints is an important

issue. For example, the type of constraints on the attribute value domain is the basis for determining fuzzy keys,

the constraints between attributes are the basis for determining fuzzy functional dependencies, an important basis

in building fuzzy standard forms to minimize data redundancy. The constraints on the attribute value domain aim

to ensure the determination of data according to a certain rule specified when designing the database and ensure

the correctness of the data of an object in the fuzzy object class. Researching and proposing algorithms related to

these types of data constraints is meaningful in terms of theory as well as application design in practice. Some

issues related to special types of constraints are researched and presented in the following works.

Attribute and Inter-Attribute domain constraints in fuzzy object oriented database based on ..

www.ijres.org 165 | Page

REFERENCES
[1]. Nguyen Kim Anh, “Normalizing object-oriented database schema” , Journal of Computer Science and Cybernetics, 9

(2), (2003), 125-130.

[2]. Ho Cam Ha, Vu Duc Quang, “Fuzzy function dependencies in fuzzy object-oriented databases”, Journal of HNUE, 7,

pp 23-31, 2011.

[3]. Nguyen Cong Hao, “Fuzzy functional dependencies based on hedge algebras”, International Journal of Computer

Technology and Applications, Vol (6) 6, 2015, pp 1052-1059.

[4]. Nguyen Cong Hao, “Fuzzy functional dependency with linguistic quantifiers base on hedge algebra”, Journal on

Information and Communications Technology, 22, (2), (2009), 87-93.

[5]. Nguyen Cong Hao, “Fuzzy Normal Forms an Approach hedge Algebra”, Journal on Information and Communications

Technology, (17), (2008), 101-107.

[6]. Nguyen Cong Hao, Le Thi My Le, “Data dependencies in fuzzy object oriented databases model based on hedge

algebras”, Annales Uni. Sci. Budapest. Sect. Comp, Vol 44 (2015), pp. 165-182.

[7]. Nguyen Cong Hao, Truong Thi My Le, “Fuzzy object-oriented database model base d on hedge algebra”, Journal of

Computer Science and Cybernetics, 20, (3), (2012), 129-140.

[8]. Nguyen Cat Ho, Le Xuan Vinh, Nguyen Cong Hao, “Unify data and establish similarity relation in linguistic databases

base on hedge algebra”, Journal of Computer Science and Cybernetics, 25 (4), (2009), 314-332.

[9]. ZM Ma, “Advances in Fuzzy Object-Oriented Databases: Modeling and Applications”, Idea Group Publishing, 2004.

[10]. Cristina-Maria Vladarean, “Extending object-oriented databases for fuzzy information modeling”, SC WATERS

Romania SRL, Romai J., 2 (1) (2006), 225-237.

