
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 12 Issue 1 ǁ January 2024 ǁ PP. 331-338

www.ijres.org 331 | Page

Design and Implementation of EDNA-based Time Series

Caching Framework

Zhenlin Zhang
1
, Mingxi Zhang

1
, Zhou Liu

2
, Fei Zhou

2
, Gaobin Hu

2
,

Haiyang Guo
3

*1 College of Communication and Art Design, University of Shanghai for

Science and Technology, Shanghai, China
2 Jiangsu Guoxin Jingjiang Power Generation Co., Ltd., Taizhou, China

3 Henan Cryptography Administration, Henan, China

Corresponding Author: Mingxi Zhang

Abstract
Sensors in the power production process generate a large amount of time-series data, and common power data

systems, such as Electricity Data Network Architecture (EDNA), suffer from slow processing speeds and

inflexible processing methods. To address the above problems, we design a time-series caching framework to

transfer time-series data from low-speed devices to memory and use a sliding window model to organize power

data into a time-series cache structure in a reasonable and efficient way, thus improving the processing speed of

the data. We conducted extensive experiments on the production environment of Jiangsu Guoxin Jingjiang

Power Generation Co. Ltd. and the results show that the proposed framework significantly improves the

performance in data reading and processing.

Keywords: Caching system, Smart power plants, Stream data processing, Sliding window model

--- ----------

Date of Submission: 19-01-2024 Date of acceptance: 02-02-2024

--- ----------

I. INTRODUCTION

In recent years, as coal-fired power plants have gradually increased their requirements in terms of

energy saving and emission reduction [1] and deep data peaking [2], the power industry has been increasingly

relying on the Internet of Things [3] and computer [4] technologies to ensure production and transportation, and

time-series power data processing [5] has become the basis and key to the whole process. Many power plants

currently use relational databases [6] to access and process power data, such as the EDNA database. With the

development of modern power networks, power plants have higher requirements for data reading, processing

speed and processing flexibility [7], and traditional databases are difficult to meet this demand [8].

Without changing the main database of the power plant, in order to improve the speed and flexibility of

sensor data processing, this paper develops a time series caching framework based on EDNA for managing time

series power real-time and historical data. After the practical application of the framework in Jingjiang Power

Plant, it obviously improves the data processing speed and meets the requirements of power plant data

management [9].

II. FRAMEWORK IMPLEMENTATION

Figure1: EDNA based time series cache architecture diagram

In this paper, we develop a time series caching framework based on EDNA, Figure 1 shows the overall

architecture of the caching framework. The framework mainly consists of four parts: constructing the power

logic tree, acquiring data, constructing the time-series cache structure and data visualization, constructing web

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 332 | Page

services with the Flask, in which the time-series cache structure maintains all the power data as the core of the

framework, at the same time, the framework creates multiple threads to continuously update the data in the time-

series cache structure.

Compared to the traditional data analysis system [10], the main idea of the framework proposed in this

paper is to load the data into the memory from the IO device with slow access speed, the foundation and

difficulty lies in how to read and maintain the data. In order to cope with the problem of large-scale real-time

streaming data and historical data reading, on the one hand, the idea in MapReduce programming model [11]

can be borrowed: the historical data and real-time streaming data are quickly merged in the Map phase, the

whole of the merged data is maintained in memory as a hash table. On the other hand, the processing of real-

time streaming data relies on power plant business information, which is often stored in traditional relational

databases such as MySQL. When the framework is initialized, the logical tree of the power plant is constructed

through relational object mapping, and all subsequent streaming data reading operations rely on the logical tree

instead of the database. This reduces the number of database accesses and overall shortens the processing time

of real-time streaming data.

III. CONSTRUCTION OF POWER LOGIC

Data acquisition and analysis can not be separated from specific business scenarios, it is no practical

significance to simply obtain the sensor value of power equipment and detach it from the specific power plant

business. Power production and transmission process involves a wide variety of equipment, regular

circumstances can be roughly divided into four levels - power plant, unit, system and physical equipment

structure [12], between the upper and lower levels are respectively a one-to-many relationship, through the

uppermost level of the power plant can be searched for all the equipment of the power system. The algorithm for

construction of power logic tree is as follows:

Input: equipment vector dV
、system vector sV

, unit vector gV
，unit-system relationship vector

g

sV

、system-equipment relationship vector

s

dV

Output: power logic tree
 , ,F G S D

1: Perform combined calculations on

g

sV
 and

s

dV
, generate a logical matrix

 * *A m n k

2. if
 size && 0dV k k 

3. Iterate over dV
, set the system property d for the intermediate result SF

, get the intermediate result

 1 2, ,...,S D D DkF F F F

4. if
 size && 0sV n n 

5. Iterate over sV
, set the system property s for the intermediate result GF

, get the intermediate result

 1 2, ,...,G S S SnF F F F

6: if
 size && 0gV m m 

7. Iterate over gV
, Set the unit attribute g for the power plant object F, get to the end result

 1 2, ,...,G G GmF F F F

8.return power logic tree F

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 333 | Page

The power logic tree requires to be constructed before fetching the data after this framework is started,

as it is needed for subsequent operations such as fetching the data and initializing the timing cache structure.

Since the power logic tree is used throughout the operation of the framework to simplify operations, the power

logic tree must be memory-resident.

IV. DATA ACQUISITION

4.1 ACQUISITION OF REAL-TIME DATA

The acquisition of real-time sensor data is the basis for real-time monitoring and real-time calculations

in the power production process. Time series data is typically derived from underlying production equipment

sensors which are received and processed through the EDNA database system. The DNA data system provides

real-time services that can effectively receive real-time sensor data and provide external interfaces for other

programs to facilitate real-time and accurate access to timing data. Once the data is received, the real-time

service sends it to the history service, compresses it and saves it in a data file, discards the current data in order

to receive the latest data.

Although the EDNA database provides an interface to access real-time data, in order to obtain real-time

data associated with the plant's operations through EDNA, it is necessary to obtain the plant's business logic

information as a parameter first. This business logic information is usually kept in the database of the

application system, which creates a challenge for real-time data. To solve this problem, power business logic

information is stored on the power logic tree in memory as part of a time series based caching framework. With

the help of power logic tree to assist in real-time data search, can reduce the number of visits to the relational

database, indirectly improve the speed of access to real-time data for power production and transportation to

provide a more reliable data base. The process of obtaining power real-time data using EDNA and power logic

tree is shown in Figure 2:

Figure2: Obtain power real-time data

4.2 ACQUISITION OF HISTORICAL DATA

To ensure that all historical data from sensors is preserved as well as to provide complete and accurate

historical data to other applications, power database systems often have built-in historical data service modules

for permanent data storage. The EDNA database provides an independent history service that is responsible for

performing operations related to historical data. This service includes modules such as configuration center,

compression algorithms, and service image files. Parameters such as storage paths, compression algorithms,

sensor business information, and historical data ranges need to be provided when reading historical sensor data.

Our framework utilizes the power logic tree to accelerate the process of acquiring sensor business logic and to

quickly complete the process of reading historical data. The process of reading historical data using EDNA and

Power Logic Tree is shown in Figure 3:

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 334 | Page

Figure3: Obtain historical power data

Power plants of different sizes have a large number of underlying sensor devices, and the number of

sensors in even a small-scale power plant may reach thousands. It means that the historical data accumulated

over the years need to occupy a lot of hard disk space, which brings huge data storage costs. To meet this

challenge, power plants need to minimize the storage space of the data while ensuring that they do not lose any

of the original data, which requires the use of lossless compression to store the data. In lossless compression

algorithms, there are various techniques available such as Deflate algorithm, Hoffman coding, arithmetic coding

etc. EDNA uses a Hoffman compression algorithm which uses a write-optimized SSTable structure [13] file

read and write strategy. It means that some optimization operations are performed when writing data, but some

additional overhead is incurred when reading data. For example, BigTable uses append writes when writing in-

memory cached data to disk, but requires a merge operation when reading. For historical data stored locally by

EDNA, the framework wants to perform read optimization to speed up the process of power data extraction. The

read overhead estimation formulas are given below for merged reads and random reads respectively:

If the seek time for the combined read method is a constant 1sT , the seek time for the random read

method is a constant 2sT , the average data read and write overhead functions are rT and wT , the data merge

overhead function is mT .

Merge Read Data Existing data d and new data  include a total of two seeks, two reads, and data

merge overhead:

     12 ,m S r r mT T T d T T d     (1)

Random Read Data Includes seek time and read data d overhead:

 2r s rT T T d  (2)

Based on the above analysis of the data reading process, when reading electric power historical data

compressed using the Hoffman compression algorithm, in order to select a faster speed to read the historical file

in different environments. Comparing and , If

, random read is selected, otherwise merged read is selected.

V. SEQUENTIAL CACHE STRUCTURE

The historical data maintained in our framework typically involves sensor data over a specific time

period, which is relatively stable and generally used for data characterization over a specific time period. In

contrast, real-time power data reflects the state of the sensor at the most recent moment. However, due to the

limited memory capacity of the server, it is not possible to satisfy all the data storage requirements. Therefore

for real-time data, the framework uses the sliding window model [14] to maintain a fixed-length list as shown in

Fig. 4: at any point in time , the data available for query in memory is , where

represents the size of the sliding window and represents the at time power data. When the list capacity

exceeds the limit value, a first-in-first-out replacement strategy is used to discard the earliest data into the cache

and empty the storage space to save the latest power data , in order to maintain and update the data efficiently.

This optimization measure can effectively balance the contradiction between the continuous growth of data and

the limited storage capacity to ensure the feasibility and stability of the system.

 12 ,S mT T d   12 ,S mT T d 

   1 12 , 2 ,S m S mT T d T T d    

n max(0, 1){ ,..., }n w na a  w

xa

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 335 | Page

Figure4: Sensor real-time data sliding window model

In order to ensure efficient access to power plant data and time series cache retrieval, this framework

utilizes a composite data structure [15] to maintain data from all sensors. Specifically, we use a composite data

structure of array + linked list + tree with the sensor's unique identifier ID as the key. In this structure, the real-

time and historical data of each sensor are stored in the corresponding values. The structure of the time series

based power data cache is shown in Figure 5: arrange all the sensor ID's in an array according to the hash value,

and connect the sensors with the same hash value to form a chain table. If the length of a linked table exceeds

the set limit, the system will automatically reorganize the linked table to form a binary sorted tree structure to

ensure efficient data storage and retrieval. The design of this composite data structure enables efficient

management and retrieval of large-scale sensor data, while ensuring efficient and accurate data manipulation.

With this data structure, we are able to better meet the needs of power plant data processing, thereby improving

the efficiency and accuracy of data access.

Figure5: Sequential cache structure

VI. DATA VISULAIZATION

Electricity data maintained in computer memory is obscure and difficult to understand for power plant

staff, while data visualization techniques [16] can make the data move and show it in a more human-like way

such as charts or diagrams. Data visualization in the power production process is important for staff to quickly

understand the operation of equipment and the health of the power generation system.

In Section 4 we have built the time series structure which efficiently holds power data in memory. In

order to further visualize the in-memory data and make it easier for the power plant staff to view it, we used

Flask to build a server-side application and Vue to build a client-side application, with the client and server side

transmitting data through the power plant's internal network. In order to ensure the real-time and efficient client-

side display of data, the server-side cache automatically obtains real-time data at regular intervals, while the

client utilizes Ajax technology to launch network requests to the server side at regular intervals. The flow of

data interaction between the client and the server is shown in Figure 6:

Figure6: Flow chart of client-server data interaction

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 336 | Page

VII. EXPERIMENTS

7.1 EXPERIMENTS ENVIRONMENT

The acquisition of real-time sensor data is the basis for real-time monitoring and real-time calculations

in the power production process. Time series data is typically derived from underlying production equipment

sensors which are received and processed through the EDNA database system. The DNA data system provides

real-time services that can effectively receive real-time sensor data and provide external interfaces for other

programs to facilitate real-time and accurate access to timing data. Once the data is received, the real-time

service sends it to the history service, compresses it and saves it in a data file, discards the current data in order

to receive the latest data.

The data used in this experiment comes from Jiangsu Guoxin Jingjiang Power Generation Co. Ltd,

where the historical dataset covers the power production data of the past ten years (January 1, 2013 to January 1,

2023), the real-time data comes directly from the EDNA database. Table 1 shows a brief summary of the

historical dataset, where the historical data contains only the previous year's data. The server side was built

based on the Flask framework using PyCharm 2020, the client side was built based on the Vue framework using

Visual Studio Code 2020, and the basic read/write modules were built in combination with Python and C++.

The framework runs on a hardware environment of Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz 2.29 GHz, a

RAM Lenovo server with 64GB of memory, and an operating system of 64-bit Windows 10.

Table 1 Jingjiang power plant data set description.
Year Sensors (units) Historical data (billions) Data flow rate (MB / S)

2013 3854 - 1

2014 4738 153.16 1

2015 5182 203.27 1

2016 5563 221.69 1

2017 5764 231.74 1

2018 6319 246.38 1

2019 6882 267.52 1

2020 7502 289.81 1

2021 7502 432.93 2

2022 7545 436.47 2

2023 7693 456.78 2

7.2 HIT RATE ANALYSIS

Firstly, the relationship between sliding window size, real-time data flow rate and real-time data

memory hit rate is explored. By continuously increasing the sliding window size in order to explore the

relationship between the access performance and memory footprint of the framework under different window

sizes and different data flow rates, the aim is to find the optimal window capacity value under different data

flow rates. The experimental results are shown in Fig. 7:

Figure7: Real-time data hit rate analysis

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 337 | Page

It can be found that as the sliding window size increases, the time-series power data queue keeps

increasing, the real-time data stored in memory keeps increasing, at the same time the hit rate of the real-time

data in memory also increases gradually. However, the hit rate is essentially maximized when the window size

reaches 50. The experimental results show that while continuing to increase the window size can further

improve the hit rate of real-time data in memory, the effect is not significant. In addition, any server has a

limited amount of memory, a too-large sliding window may increase the retrieval overhead and additional

internal and external replacement operations, even affecting the memory usage of other modules, thus

decreasing the access performance of the whole framework.

7.3 ACCESS PERFORMANCE ANALYSIS

In order to further validate the overall access performance of power data in the caching framework, the

experiment fixes the historical data size to 10 GB, adopts the Hoffman compression algorithm, the real-time

streaming data flow rate is fixed to 100 KB/S, and each piece of data is about 16 B. 6250 pieces of data are

processed per second. Each test is conducted 10 times, each lasting 20 minutes, and the average value is

calculated as the experimental result.

As a result of the optimization of the caching framework, Table 2 demonstrates the effect of the

improvement in real-time and historical read performance for power data. A sliding window model is used to

maintain a list of real-time data, keeping the most recent and up-to-date data in memory, thus avoiding the read

process that involves IO operations and improving the read speed. When the amount of real-time data exceeds

the window maximum and is discarded, it can be accessed using EDNA's history module, which has resulted in

a 54.61% improvement in real-time data read/write performance through the space-for-time method. In addition,

this paper constructs a power logic tree to simplify the operation of obtaining sensor business data during

historical data reading, which improves the performance of historical data access up to 12.38%. Combining the

above two optimization methods, the combined access performance (number of reads and writes per unit time)

of this framework is improved by nearly 17% compared to the EDNA system.

Table 2 Power data reading performance analysis.
Test metric Test method Number of reads and writes (TPS) Enhancement effect

Real-time read performance EDNA
EDNA improved

6712.3
10381.0

1

Historical read/write performance EDNA

EDNA improved

23251.3

26132.1

1

Overall Read/Write Performance EDNA
EDNA improved

28731.6
33616.4

1

VIII. CONCLUSION

In this paper, we propose an EDNA-based time-series power caching framework aimed at quickly

obtaining real-time streaming data and historical data for visualization to reflect the production of power plants

in real time. The foundation and focus of the framework lies in the construction of the power logic tree, through

which the power data acquisition process is simplified, the acquired data is efficiently integrated using the

sliding window model and hash tables, and the core temporal caching structure is established to provide the

underlying support for a variety of advanced data computation tasks. The effectiveness of the proposed

framework is demonstrated through extensive experiments on the Jingjiang Power Plant dataset, where the

combined access performance of the framework is improved by nearly 17% compared to EDNA. In the future,

we will continue to optimize the caching framework and delve into data feature-driven adaptive caching

structures.

REFERENCES
[1]. Liu H, Guo G, Chen Z. Study on WESP multi-pollutant emission reduction and energy efficiency test of ultra-low emission unit[J].

Power Generation Technology,2023,44(01):94-99.

[2]. Luo J. Innovative management mode leads power enterprises to improve quality and efficiency [J]. China Businessman,2023

(10):144-145.
[3]. Zhang S, Xiao Y, Li Y, et al. Collaborative operation of electricity-carbon-green market of new-type power system based on

blockchain technology[J]. Electric Power Construction,2023,44(11):1-12.

[4]. Li Z. A perfect solution for intelligent power plant-a case study on xinguang power generation co., ltd.[J]. Industrial Technology
Innovation,2017,4(3):4.

[5]. Zhong Z, Zhang G, Yin L, et al. Description and Analysis of Data Security Based on Differential Privacy in Enterprise Power

Systems[J]. Mathematics, 2023, 11(23): 4829.
[6]. Liu S. New development of power plant informatization-research on intelligent power plant construction [J]. Science and

Technology,2016,26(11):103.

[7]. Pan D, Liu H, Li Y. A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter
algorithm[J]. Power System Technology,2008,(07):82-86.

[8]. Yang D, Yu J, He Z, et al. Applying self-powered sensor and support vector machine in load energy consumption modeling and

prediction of relational database[J]. Scientific Reports, 2023, 13(1): 19097.

Design and Implementation of EDNA-based Time Series Caching Framework

www.ijres.org 338 | Page

[9]. Liu X. Analysis of data engineering and management control system in power plants[J]. Application of IC,2023,40(03):330-332.

[10]. Yamate S, Otomo J. Design of cost-effective and highly efficient systems for protonic ceramic fuel cells based on techno-economic

analysis[J]. Energy Conversion and Management, 2024, 301: 118016.
[11]. Lämmel R. Google’s MapReduce programming model—Revisited[J]. Science of computer programming, 2008, 70(1): 1-30.

[12]. Seven S, Yao G, Soran A, et al. Peer-to-peer energy trading in virtual power plant based on blockchain smart contracts[J]. Ieee

Access, 2020, 8: 175713-175726.
[13]. Chandakanna V R. REHDFS: A random read/write enhanced HDFS[J]. Journal of Network and Computer Applications, 2018, 103:

85-100.

[14]. Liu Z, Wang J, Hui Z, et al. Research on positioning and mapping algorithm of sliding window optimization for substation
monitoring robot[J]. Energy Reports, 2023, 9: 898-908.

[15]. Yan T, Qu Z Z, Hui D, et al. The Business Optimization Analysis of the Virtual Power Plant Based on the Large-Scale BESS

System[J]. Advanced Materials Research, 2015, 1070: 1524-1533.
[16]. Ajibade S S, Adediran A. An overview of big data visualization techniques in data mining[J]. International Journal of Computer

Science and Information Technology Research, 2016, 4(3): 105-113.

