"Analysis and Design of G+3 Building Using ETABS"

Department of Civil Engineering, BGSIT, ACU

Date of Submission: 15-08-2023 Date of acceptance: 31-08-2023

I. INTRODUCTION

This study presents structural analysis and design ideas for a planned residential building at. All analyses and criteria for structural design input are included in this document. It is the basis for the structural engineer's plans to analyse, design, and detail the structure so that it is safe, stable, strong, and cost-effective in accordance with Indian Standards and other building standards. Structural analysis and design calculations use this report's parameters. This report addresses the minimal design need to develop the unified design base that constitutes the structural design philosophy for the proposed construction.

The design will aim to achieve

- Stability and function.
- Desirable service design load structural performance.
- Earthquake resistance.
- Structural, serviceable, durable, and economical.

II. LITERATURE REVIEW

Varalakshmi V et.al (2014) [1] built the skeleton of a G+5 home from the ground up. IS 875(Part I & II)-1987 dead and live loads and IS 1986-1985 HYSD bars were employed in this study. They observed that a reinforced concrete structure's safety depends on its structural analysis, design, and reinforcing characteristics.

Chandrashekar et.al (2015) [2] ETABS was used for both the assessment and planning of the multi-story structure. A G+5 building's response to lateral wind and seismic loads was analysed in ETABS. They considered fire spread and the best fireproof material. They offered the innovative and user-friendly ETABS application for high-rise structures to save design time.

Balaji.U and Selvarasan M.E (2016) [3] multi-story structures' static and dynamic loads were analysed and designed using ETABS. The effects of an earthquake on a G+13 house were analysed using ETABS. For both static and dynamic analyses, linear material characteristics were used. Behaviour in areas of high seismicity and soil type II was analysed using a non-linear model. Base shear and displacements were charted and analysed.

Geethu et.al (2016) [4] compared STAAD.Pro with ETABS multi-story building analysis and design. They designed residential and commercial buildings. The Auto CAD-drafted plan followed the national construction code. ETABS software had greater bending moment and axial force readings.

Nagaratna et.al Multi-storey structural analysis and design project RCC building analyses multi-storey buildings using structural analysis methodologies and software (ETABS). E-TABS software analyses beams and columns, while IS: 456-2000's "LIMIT STATE METHOD" designs slabs and footings. Uses M-25 concrete and Fe-415 steel.

Maruthi T et.al In Civil Engineering, a building is a structure with many parts such a base, ETABS' input, output, and Building-type structures' physical and numerical properties are used to solve numerical problems. Architectural features include walls, columns, floors, roofs, doors, windows, ventilators, stairlifts, surface treatments, etc. Structural studies and design create a structure that can withstand all loads.

B. Anusha et.al. We understand the housing issues in this era of diminishing space, time, and expectation. Any institution now offers student hostels. G+4 building with stairs and elevator accommodates 120 students. The model is being prepared by ETABS. It is capable of handling complex structures as well as high-rise skyscrapers. It performs assessments on beams, columns, slabs, shear walls, and other structural elements. We are able to

quickly analyse a wide variety of materials using ETABS, including concrete, steel, reinforced concrete, and others. Produce gravitational, lateral, and self-weights on its own automatically. (Varalakshmi V et al-2014).

Chandrakala V B et.al, Civil engineering constructions have foundations, walls, columns, floors, roofs, doors, windows, ventilators, stairs lifts, and surface treatments. Design and analysis create load-bearing structures. Structural analysis and design need geotechnical study.

Geotechnical site investigations design and install foundations. Structural engineers must carefully design the most cost-effective and functional building for its intended application.

Nilendu Chakrabortty et.al, The successful plan and development of seismic tremor safe structures have a lot more significance worldwide, so designs are trying to use various materials to their best advantage, keeping in mind the unique properties of each material. Combining the most desirable qualities of a single material with the functional and aesthetic requirements of the project results in the construction of the most robust and aesthetically pleasing buildings.

Nirmal S. et.al ETABS engineering software analyses and designs multi-storey buildings. Extended Three-Dimensional Building System Analysis is ETABS. CAD drawings may be used to create ETABS models or as templates for ETABS items. Software generates full reinforcement report. Building floor levels are identical, reducing modelling and design time. Similar storey model creation for speed. Structural components might be steel, RCC, composite, or user-defined.

Shah H. J. and Jain S. K. et.al, Have examined building earthquake performance utilising various load combinations. They also examined high-wind building performance. They also detailed structural components utilising Indian Standard Code. Restoring force depends on shear wall location.

Uma M and Nagarajan (2016) et.al, Changed the shear wall placement to get the best multistorey building structural layout. The shear wall at the building corner has minimal displacement and drifts, making it the best site. Shear wall material also affects building performance.

2.2 Objectives

Objectives from the literature review are:

- This study utilises ETABS to do an analysis as well as the design of a G+3 commercial structure.
- Using manual methods, design the beam, slab, column, and footing.
- Manual vs. ETABS outcomes.
- Auto CAD drawing and reinforcing of structural components.

III. METHODOLOGY

Stilt, 1st, 2nd, and one more level are planned for the residential construction. RCC beams and slabs support the structural framework. Columns are spaced for stability and utility with RCC shear walls.

Architectural planning and serviceability determine beam planning. Secondary beams are required.

The system resists the entire design force according to their lateral stiffness considering floor level interaction.

IS:1893(Part1)-2016 classifies the building as an SMRF. Horizontal diaphragms are floor slabs.

3-D ETAB Software will be utilised for structural system analysis and design/detail. All designs must adhere to Indian requirements.

3.1 SOFTWARS USED:

3.1.1 AUTOCAD.

Drafters create drawings and designs using CAD. Autodesk AutoCAD. Drafters create product drawings. Engineers, surveyors, architects, and scientists utilise CAD graphics to design buildings, toys, and spaceships. CAD drafters know conventional drawing techniques too.

Drafting includes aeronautical, architectural, electrical, and mechanical specialties. AutoCAD drafters' tasks differ by specialty. Drafters utilise CAD software to sketch building proportions, materials, and construction steps. They show component-system relationships from numerous viewpoints. Drafters discuss design and layout with coworkers.

Drafters work with builders to define specifications and grasp design ideas. Drafters fix design flaws. Supervisors instruct entry-level drafters.

3.1.2 ETABS.

The acronym ETABS stands for "building structure-specific software." Building models may be created, modified, analysed, designed, and optimised with its assistance by structural engineers. These technologies have been thoroughly incorporated into a graphical user interface that is based on Windows and offers unrivalled levels of use, productivity, and power. ETABS is the latest structural analysis and design software. This latest version of ETABS incorporates forty years of continuous research and development and provides users with unmatched 3D object-based modelling and visualisation tools, blazingly fast linear and nonlinear analytical power, sophisticated and comprehensive design capabilities for a wide range of materials, and insightful graphic displays, reports, and schematic drawings that help users quickly and easily understand a problem's results. ETABS can combine engineering design from concept to schematics. Drawing controls speed floor and elevation framing. CAD designs may be used to create models and templates for use in ETABS and base plate capacity tests, and automated optimization.

It is possible to create realistic models, and the results may be shown on the structure itself. Structures made of concrete and steel could have frame designs, schedules, features, and cross-sections. Personalize each and every outcome of the analysis and design.

The capabilities that ETABS provides to structural engineers are unparalleled, and they may use it to design everything from one-story industrial buildings to the largest commercial high-rises.

Since its introduction many decades ago, ETABS has shown its ability to perform well while being simple to use. Its most recent iteration provides engineers with the technically advanced but user-friendly tools they need to be productive.

ETABS performs structural analysis and architectural design for residential buildings.

We choose ETABS for these reasons:

Easy interface, conforms to Indian Standard Codes, solves any sort of issue, accurate answer.

3.1.3 ADVANTAGES OF ETABS

Most constructions use horizontal beams and vertical columns. ETABS may create any building structure, However, the geometry of a structure may be generated rapidly using a grid system of horizontal floors and vertical column lines.

Building floors are similar. Numerically, this commonality reduces computation.

> Building terminology is used for input and output. Instead of defining models as a series of nodes and components as general-purpose programmes do, ETABS does it logically by floor, column, bay, and wall. Clarity and utility in structural definition.

> When comparing bay widths and storey heights, most structures have quite large elements. The rigidity of the frame is greatly affected by these measurements. ETABS accounts for this impact in the definition of member stiffness, while other general-purpose programmes do not.

Program outcomes should be immediately useable by engineers. Generic purpose computer programmes generate general outputs that may require further processing for structural design.

3.1.4 APPLICATIONS OF ETABS

- Commercial high-rises.
- Staggered trusses.
- Steel-concrete construction.
- Multi-grid building.
- Concrete slab structures.
- > Building exposed to any vertical, lateral, and automated wind and seismic load situations.
- Floor-to-wall load transmission.

4.1 INTODUCTION

IV. MATERIALS

This study resource interacts with students to teach them fundamental structural design principles for Reinforced Cement Concrete and Masonry structures. IS 456 general requirements for plain and reinforced concrete structural design, IS 1905, IS4326, IS 1893, etc. are covered in the study material. For readers, Indian Standards has been simplified and condensed.

4.2 REINFORCED CEMENT CONCRETE DESIGN REQUIREMENTS.

4.2.1 CEMENT

Table 4.1:- varieties of cements which are permitted to be used in concrete and mortars such as:

SL	NAME OF CEMENT	INDIAN STANDARDS
NO.		SPECIFICATION
1	Ordinary Portland Cement	IS 269
	• 33 Grade	
	• 43 Grade	
	• 53 Grade	
	• 43-S Grade	
	• 53-S Grade	
2	Portland Pozzolana Cement – Fly Ash	IS 1489 (Part-1)
	based	
3	Portland Pozzolana Cement – Calcined	IS 1489 (Part-2)
	Clay based	
4	Portland Blast Furnace Slag Cement	IS 455
5	High Alumina Cement for Structural use	IS 6452
6	Rapid Hardening Portland Cement	IS 8041
7	Sulphate Resisting Portland Cement	IS 12330
8	Low Heat Portland Cement	IS 12600
9	White Portland Cement	IS 8042
10	Super Sulphated Cement	IS 6909
11	Hydrophobic Cement	IS 8043
12	Composite Cement	IS 16415
13	Micro-fine Ordinary Portland Cement	IS 16993

Portland Pozzolana Cement (PPC) or 43/53 grade regular Portland cement is recommended for mild to moderate environments (OPC). These kinds are mass-produced and typically uniform in quality. Though the performance of various cements under varied environmental circumstances is well understood, a particular kind of cement may be needed in the following scenarios;

Concrete needs extremely high early strength.

a) Concrete must be heat-resistant.

b) Concrete in sulphate-rich soil/water or other chemically hostile environments.

c) Cement alkalis may react with aggregate.

d) The concrete will be employed in a gigantic construction where the temperature increase may produce intolerable thermal strains.

e) Colored concrete is necessary.

f) The concrete may be exposed to heavy chloride-ion assault in a maritime or industrial environment.

g) Other unique criteria or combinations of aforementioned requirements.

4.2.2 Portland Pozzolana Cement (PPC)

Reactive silica may be found in pozzolana. The chemical reaction between calcium hydroxide and siliceous or siliceous and aluminous material at room temperature results in cementitious compounds. Cementitious calcium silicates (C-S-H) can only be produced by the reaction of finely split pozzolana with calcium hydroxide (liberated by hydration Portland Cement) and water. Based on the pozzolanic material used, the Indian requirements for Portland Pozzolana Cement are divided into two parts.

IS 1489, Part 1 and Part 2 specifies Portland Pozzolana Cement are fly ash based and calcined clay based respectively.

4.2.3 Sulphate Resisting Portland Cement (SRPC)

Sulphate Resistant Portland cement is referred to be Portland cement if it contains less than 5 percent tri-calcium aluminate (C3A) and 2(C3A +C4AF). SRPC is especially useful in settings where concrete is at danger of degradation owing to sulphate assault, such as in contact with soils and ground fluids high in sulphates, in sea water, or immediately on the shore. Sulphate-resistant cement causes rebar corrosion in chloride-prone areas.

4.2.4 43 grade OPC:

PPC, PSC, and 43 grade OPC are common general-purpose cements. OPC 43 grade cement usage has fallen as PPC has become more prevalent. According to IS regulation, cement's compressive strength at 28 days should be 43–58 N/mm2. These guidelines' Annexures I and II list this cement physical and chemical characteristics. 43-grade OPC is often used for:

- a. Common Building Construction Engineering Tasks
- b. RCC works
- c. Concrete roads, bridges and flyovers.
- d. Blocks, tiles, pipelines, and other precast materials.
- e. Non-structural works such as masonry mortars, plastering, flooring etc.

4.2.5 Microfine Ordinary Portland Cement

Rock grouting, grouting concrete buildings, subterranean construction for leak prevention, soil stabilisation, etc. may be done using IS: 16993.

4.3 ADMIXTURES

To enhance concrete characteristics, additive usage has expanded in recent years. different qualities and functions. They're grouped as follows:

4.3.1 MINERAL ADMIXTURE

Mineral admixtures or supplementary cementing materials (SCM) like pozzolanas (including fly-ash, silica fume, and metakaoline) and Ground Granulated Blast Furnace Slag may be used to make concrete if they match Indian Standards. If suitable and within pozzolana restrictions, such additions may be considered in concrete composition for cement content and water-cement ratio.

4.3.2 POZZOLANA or Supplementary Cementing Materials (SCM)

Pozzolana, a siliceous material without cementitious properties, reacts with calcium hydroxide at room temperature to produce cementitious compounds when finely divided and dissolved in water.

Different building projects employ different pozzolanas. Pozzolanas increase concrete's workability, cohesiveness, impermeability, resistance to hostile fluids, heat of hydration, and alkali-aggregate reactivity. Construction type will determine the relative relevance of these qualities. Pozzolana is a siliceous material without cementitious properties that, when finely split and in water, reacts with calcium hydroxide to form cementitious compounds at room temperature.

Pozzolanas vary every construction project. Pozzolanas improve concrete's workability, cohesiveness, impermeability, resistance to hostile fluids, hydration heat, and alkali-aggregate reactivity. These qualities are different depending on the kind of construction. At room temperature and in the presence of calcium hydroxide,

the inert siliceous material known as pozzolana may create cementitious compounds via a series of chemical reactions.

Pozzolanas vary every construction project. Pozzolanas improve concrete's workability, cohesiveness, impermeability, resistance to hostile fluids, hydration heat, and alkali-aggregate reactivity. These attributes depend on construction type.

4.3.3 CHEMICAL ADMIXTURE

Adding a superplasticizer to cement concrete during mixing is necessary to achieve the quality specified in IS 9103:1999 Specification for admixtures for concrete (first revision).

4.3.4 Accelerating Admixture or Accelerator

Additives speed up hydraulic cement hydration, set time, hardening, and strength development in concrete, mortar, and grout.

4.3.5 Retarding Admixture or Retarder

An additive that slows cement paste and cement-based compositions like mortar and concrete.

4.3.6 Water Reducing Admixture or Workability Aid

An aid that allows freshly mixed mortar or concrete to be worked with less water or that makes it workable without adding water.

4.3.7 Air-Entraining Admixtures

A chemical compound that is used to boost the workability, resistance to freezing and thawing, and disruption of deicing salt in concrete or mortar by introducing minute air bubbles during the mixing process. This is accomplished by the usage of the chemical compound.

4.3.8 Super-plasticizing Admixtures

A mortar or concrete additive that increases workability or decreases water content.

4.4 AGGREGATES.

> IS 383 governs aggregates. Prefer natural aggregates whenever feasible.

Slag and crushed, overburned brick or tile may be excellent additions to otherwise plain concrete components, providing such components with increased strength, durability, and safety. However, the amount of sulphates present in the aggregates in the form of SO3 shouldn't be more than 0.5 percent, They shouldn't absorb more than 10% of their bulk in water.

4.5 WATER

Concrete mixing and curing usually use potable water. Water must be at least 6 Ph.

Table 4.2Concrete's Sonds- water withing Limit.				
Sl No	Tested as per	Permissible Limit, Max		
Organic	IS 3025 (Part 18)	200 mg/l		
Inorganic	IS 3025 (Part 18)	3000 mg/l		
Sulphate (as SO3)	IS 3025 (Part 24)	400 mg/l		
Chloride (as Cl)	IS 3025 (Part 32)	2000 mg/l for concrete not containing embedded steel and 500 mg/l for reinforced concrete work.		
Suspended Matter IS 3025 (Part 17) 2000 mg/l				
Note: 1000 mg/l chloride in water for reinforced concrete work can be permitted provided the chloride content of hardened concrete is checked at the time of concrete mix design and conforms to requirement of total chloride content in the concrete as per the code.				

Table 4.2:-Concrete's Solids-Water Mixing Limit.

4.6 REINFORCEMENT

Steel reinforcement used shall be,

(a) below Fe415 (conforming to IS:1786)

(b) Thermomechanically treated high-strength ribbed bars with elongation more than 14.5 percent and adhering to IS: 1786 are grade Fe-500 D and Fe-550 D. Tensile test results for steel bars must not exceed their characteristics by more than 20%. There has to be between 1.15 and 1.25 times the ultimate strength for every unit of yield tensile strength. The elasticity of steel is 2×105 MPa.

4.7 CONCRETE

When fewer than 5% of test results fail, we say that the material is at its usual strength. It's fck.

Grades of concrete		Specified characteristic
Group	Grade designation	compressive strength of 150 mm cube at 28 days in N/mm ²
Ordinary concrete	M 10	10
-	M 15	15
	M 20	20
	M 25	25
Standard Concrete	M 30	30
	M 35	35
	M 40	40
	M 45	45
	M 50	50
High strength Concrete	M 55	55
0	M 60	60
	M 65	65
	M 70	70
	M 75	75
	M 80	80

Compressive strength in N/mm2 of a 150 mm cube after 28 days, Concrete Mix M.

Properties of Concrete

* Characteristic Modulus of Elasticity

 $E_{ck} = 10000 \ [f_{ck}]^{0.3}$; where, f_{ck} is the characteristic strength of the concrete

* Poisson's ratio to be taken equal to 0.2 for uncracked concrete

0.0 for cracked concrete

* Characteristics Modulus of rupture

$$f_{cr}' = 0.5 \sqrt{f_{ck}}$$

* Characteristics splitting tensile strength

$$f_{cst}' = 0.33 \sqrt{f_{ck}}$$

• Flexural Tensile Strength f_{cr}

$f_{\rm cr} = 0.7 \sqrt{f_{\rm ck}}$

4.7.1 Creep Strain

a) **Creep of concrete**: Without changing tension, concrete creeps. Mixture proportioning, ambient circumstances, curing conditions, and concrete member geometry affect creep. loading and stress. The creep co-efficient $\mu(t,to)$ is:

where

 $\varepsilon cc(t) = \text{creep strain at time } t > t0$, (This does not include the instantaneous strain in concrete

upon loading) $\varepsilon ci(t0) = initial strain at loading, and$ t0 = age of concrete at the time of loading.

b) Shrinkage Strain

The degree to which components, member size, and environmental factors affect concrete shrinkage varies. The total quantity of water used in the mixing process has the biggest influence on the shrinkage of concrete at a particular humidity and temperature. The cement content has a secondary function in the shrinkage of concrete.

Grade of	Grade of Reinforcing Steel							
Concrete	Fe 415	Fe 415D	Fe 500	Fe 500D	Fe 600	Fe 650	Post	Pre
							tesnsio	tensioni
							ning	ng
M20	✓	\checkmark	✓					
M25	✓	\checkmark	✓		Ν	ot		
M30	✓	\checkmark	✓	\checkmark	Perm	itted		
M35	~	\checkmark	✓	~			\checkmark	
M40	✓	\checkmark	✓	\checkmark	\checkmark		\checkmark	~
M45	✓	\checkmark	✓	\checkmark	✓	~	\checkmark	~
M50	✓	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
M55	✓	\checkmark	✓	\checkmark	✓	✓	\checkmark	~
M60	✓	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	~
M65	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	~
M70	✓	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
M75	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark	~
M80	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓
M85	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark
M90	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark
M95	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
A100 or higher	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 4.3:- Concrete grade, reinforcing steel, and pre-stressing allowed.

4.8 WORKABILITY OF CONCRETE

oncret	oncrete workability means ease of use. Five workability levels:				
	Degree of workability	Placing condition			
	Very low	In highway construction a layer of lean concrete with very low workability is used and it is compacted using roller			
	Low	Low Mass concreting (like, dam construction) light reinforced section of slab, beam, and column.			
	Medium	Heavily reinforced section of slab, column beams and when pumping of concrete is required.			
	High	In-situ piling			
	Very high	In-situ piling using tremie pipe.			

4.9 DURABILITY OF CONCRETE

Durability considerations include,

The result depends on the weather, integrated steel cover, component kind and quality, concrete cement content and water/cement ratio, member shape and size, and the quality of the compaction and curing operation.

Design and details Maintenance

4.10 EXPOSURE CONDITIONS:

Five environmental exposures:

Some of the potential deterioration mechanisms causing durability problems:

A. Corrosion of reinforcement due to

a) Permeation of ambient carbon dioxide in concrete (carbonation-induced corrosion) b) Significant chloride ion

in concrete (chloride induced corrosion)

B. Physical deterioration processes;

Abrasion, freezing and thawing, weathering, shrinkage etc.

C. Chemical deterioration processes;

Sulphate attack, alkali aggregate reaction etc.

Table 4.3:-Environmental Exposure Condition

Sr. No.	ENVIRONMENT	Exposure condition
1.	Mild	Concrete surface protected against weather.
2.	Moderate	Concrete surface sheltered from severe rain, saturated air in coastal areas, concrete continuously under normal water and in contact with non –aggressive soil.
3.	Severe	Concrete surface exposed to severe rain, alternate wetting and drying, completely immersed in sea water, exposed to coastal environment.
6.	Very severe	Concrete surface exposed to sea water spray, corrosive fumes, and severe freezing condition and in contact with aggressive soil/ground water.
5.	Extreme	Surface of member in tidal zone or in direct contact with liquid/solid aggressive chemicals.

4.11 CONCRETE MIX PROPORTIONING

During concrete mix design, cement, coarse aggregate, fine aggregate, water, and sometimes additives are calculated to achieve the required workability of fresh concrete and strength, durability, and surface quality of hardened concrete.

Concrete may be mixed in one of two ways:

i. Design mix concrete

ii. Normal mix concrete

M20 and higher should use design mix. Only M20 and weaker concrete may utilise nominal mix.

Grade of concrete	Nominal Mix proportion (cement: sand: coarse aggregate)
M10	1:3:6
M15	1:2:4
M20	1.1.5:3

Table 4.4:- Grades of concret

4.12 CURING

Curing keeps concrete wet. Low water cement ratios need concrete moisture retention. Curing has two main types: i. Moist curing

ii. Membrane curing

V. STRUCTURAL DESIGN CONSIDERATION

4.1 The purpose of design is to accommodate the following conditions:

(1) Safety

- (2) Economy
- (3) Durability
- (4) Robustness
- (5) Integrity
- (6) Serviceability
- (7) Aesthetic
- (8) Sustainability

5.2 LOADS

There are 2 sets of loads

Force Loads

Displacement Loads

- Force Loads
- ✓ Dead Load
- ✓ Wind Load
- ✓ Snow Load
- ✓ Earth Pressure
- ✓ Water Pressure
- ✓ Blast Load
- ✓ Imposed Load
- ✓ Impact Load
- ✓ Prestressing Force
- ✓ Construction/ Erection Load

Displacement Loads

- ✓ Temperature Load
- ✓ Shrinkage Load
- ✓ Creep Load
- ✓ Elastic Shortening Load
- ✓ Foundation Settlement/ Movement/ Rotation
- ✓ Earthquake Ground Shaking

5.3 FIRE RESISTANCE

➤ Using fire-resistant materials and covering steel makes a structure fireproof. Fire resistance is measured in hours.

			Minim	um Nom	inal Cove	r (mm)	
Member	Condition of Member	Type of Aggregate	for Fire Resistance Rating (hours)				
			1.0	1.5	2.0	3.0	4.0
Slabs	Simply Supported	Siliceous	20	25	35	45	55
		Carbonaceous	20	20	30	40	50
		Light Weight	20	20	25	35	45
	Continuous	Siliceous	20	20	25	35	45
		Carbonaceous	20	20	20	30	40
		Light Weight	20	20	20	25	35
Beams	Simply Supported	Siliceous	20	20	40	60	70
		Carbonaceous	20	20	35	55	65
		Light Weight	20	20	30	50	60
	Continuous	Siliceous	20	20	30	40	50
		Carbonaceous	20	20	25	35	45
		Light Weight	20	20	20	30	40
Prestressed	Simply Supported	Siliceous	40	55	70	80	90
Deallis		Carbonaceous	40	50	65	75	85
		Light Weight	40	45	60	70	80
	Continuous	Siliceous	30	40	55	70	80
		Carbonaceous	30	35	50	65	75
		Light Weight	30	30	45	60	70
Ribs of	Simply Supported	Siliceous	20	35	45	55	65
Waffle Slabs		Carbonaceous	20	30	40	50	60
		Light Weight	20	25	35	45	55
	Continuous	Siliceous	20	20	35	45	55
		Carbonaceous	20	20	30	40	50
		Light Weight	20	20	25	35	45

Table 5.1:- fire resisting ratings

Columns	Fully exposed to fire	Siliceous	50	60	70
		Carbonaceous	45	55	65
		Light Weight	40	50	60
	50% exposed to fire	Siliceous	50	55	60
		Carbonaceous	45	50	55
		Light Weight	40	45	45
	One face exposed to fire	Siliceous	40	45	50
		Carbonaceous	40	40	45
		Light Weight	40	40	40
Walls Two faces expo	Two faces exposed to	Siliceous	50	60	70
	Jire	Carbonaceous	45	55	65
		Light Weight	40	50	60
	One face exposed to fire	Siliceous	50	55	60
		Carbonaceous	45	50	55
		Light Weight	40	45	45

5.4.1 Static Lateral Force Method

The similar static lateral force approach gives an easy alternative for constructing against the dynamic loads of an expected earthquake. The whole seismic force, denoted by the symbol V, has been assessed along two horizontal axes that are perpendicular to the primary axis of the structure.

It presupposes lateral response. To eliminate subsurface torsional movement, the structure must be low-rise and symmetrical. Seismic forces must not affect the building in both directions.

5.4.2 Linear Dynamic (Response spectrum) analysis

Construction uses reaction spectrum analysis (RSA). Modal decomposition and the response spectrum simplify response history analysis (RHA). Peak response is quickly determined without response history analysis. This is crucial because response spectrum analysis (RSA) uses fast and simple calculations, unlike time history analysis, which solves the differential equation of motion over time. The response spectrum represents earthquake risk.

The greatest reaction of an SDOF system versus time during an earthquake creates a response spectrum (or frequency). The damping ratio's maximum response locus determines the SDOF system's response spectrum. Response spectra allow peak structural responses in the linear response range to determine earthquake-induced lateral forces. Peak structural responses in linear response range enable this.

SDOF system response is determined by time- or frequency-domain analysis. The study determines the largest reaction over a certain time period. This applies to all SDOF ages. The last figure shows the damping ratio and input ground motion response spectrum 103. Damping ratios determine response spectra.

5.4.3 Non-linear Static (Push-over) Analysis

Pushover analysis—a nonlinear static analysis—loads a structure arbitrarily. Loading exacerbates structural weaknesses and failure mechanisms. A modified monotonic force-deformation criteria and damping approximations characterise cyclic behaviour and load reversals. Structural engineers assess structure strength using static pushover analysis. Performance-based design may use this research.

An evaluation of a pushover based on performance. The ATC-40 states that in order for performance-based design to be possible, demand and capacity must first exist (Applied Technology Council, Seismic Evaluation and Retrofit of Concrete Buildings). The shaking of the ground and buildings that occurs as a result of an earthquake is an analogy for demand. Nonlinear static analysis gives preliminary approximations of structural displacements or deformations in order to take into account demand. Evaluation of earthquake resistance is often done using capacity as the criterion. Key aspects of performance include capacity as well as the ability to satisfy requirements. As a consequence of this, earthquake resilience is an essential component of the building's overall design.

Pushover analysis using the displacement coefficient and capacity spectrum technique.

Pushover analysis—a nonlinear static analysis—loads a structure arbitrarily. Loading exacerbates structural weaknesses and failure mechanisms. A modified monotonic force-deformation criteria and damping approximations characterise cyclic behaviour and load reversals. Static pushover analysis is a method that structural engineers use to evaluate the true strength of a structure. This study may be seen of as a possible strategy for performance-based design.

An evaluation of a pushover based on performance. The ATC-40 states that in order for performance-based design to be possible, demand and capacity must first exist. The shaking of the ground and buildings that occurs as a result of an earthquake is an analogy for demand. Nonlinear static analysis gives preliminary approximations of structural displacements or deformations in order to take into account demand. Evaluation of earthquake resistance is often done using capacity as the criterion. Key aspects of performance include capacity as well as the ability to satisfy requirements. As a consequence of this, earthquake resilience is an essential component of the building's overall design.

5.4.4 Nonlinear Dynamic (Time History) Analysis

Time-history analysis. Nonlinear structural seismic analysis needs it. This investigation needs a structure's representative seismic time history. Time history analysis steps through a structure's dynamic reaction to a variable loading. Time history analysis determines a structure's seismic response under representative earthquake dynamic loads.

VI. ANALYSIS AND DESIGN OF PROPOSED G+3 RESIDENTIAL BUILDING

6.1 Salient Features of Project:

G+3 residential building. It has two tales and a feature piece. Drawings show the site's normal floor arrangement and functioning. The building has a stairwell.

Each level will cover:

6.2 PROPOSED PROJECT

Ground-floor, two-story residential building is proposed. Bangalore's executing.

1.Type of structure	Residential building
2.Layout	As shown in the plan
3.Number of storey	G+3
4.Storey height	3.0m
5.Depth of foundation	2.1
6.Wall	230mm thick
7.Live Load	IS 875(Part-2)1987
8.Material	M20 grade concrete&Fe500 steel
9.Design Philosophy	Limit state method conforming to IS456-2000

6.3 Structural Plan:

Floor-to-floor structural plans vary according to customer needs. Sometimes the architect may propose alternative plans for different levels, considering the aesthetics and space requirements of a structure. The structural plan mostly deals with the column-beam arrangement. Floor plans will vary in this project. The floor plans of the building are shown below.

1.50 M WIDE PROJECTION ABOVE

Fig 6.1:- Ground floor

Fig 6.2 :- first floor

Fig 6.3:- Second floor

TERRACE PLAN

Fig 6.4:- Terrace floor

Fig 6.5:- Column layout plan

Fig 6.6:- Plinth Beam layout plan

Fig 6.7:- Stil floor Beam layout.

1st FLOOR ROOF LVL. BEAM FRAMING PLAN

Fig 6.8:- 1st Floor roof lvl. beam framing plan

TERRACE FLOOR LVL, BEAM FRAMING PLAN

Fig 6.10:- Terrace Floor lvl. Beam framing plan

Fig 6.11:- Foundation layout plan

Fig 6.12:- Section elevation

VII. LOADING PARAMETERS

7.1 Design Data:

ETABS software analysed and designed a three-story reinforced concrete asymmetrical frame structure. Residential building. Assuming infinite rigidity in its plane, the building floor moves like a rigid body. Linear static analysis was done. Seismic zone II and medium soil host the building. **7.2 Building details:**

Length	= 19.89m
Width	= 10.83m
No. of Storey	= G+3
Storey Height	= 3.0 m
Total No. of Column	= 22
Rectangular Column size	= 230*450mm, 230*230mm, 300*300mm
Beam size	= 230*450
Slab thickness	= 125.00 mm
wall thickness	= 230.00 mm
SBC of soil	$= 180 \text{ KN/m}^2$
Grade of concrete	= M20
Steel grade	= Fe500
Density of Concrete	= 25.00 kN/m ³
Density of Brick	$= 18.85 \text{ kN/m}^3$

Si No.	Descriptions	Width/ Thickness	Density	Height	Weight	Remarks
1	DEAD LOAD - IS 875 (Part-1)					
Α	Stilt floor IvI. (Plinth Level)					
	230mm Thick masonry load					
i)	230mm thk, upto beam bottom	0.23	18.85	2.4	10.41	KN/m
-7	Wall Plaster	0.024	20.4	2.4	1.18	KN/m
			Total		11.58	Say 12 KN/m
	115mm Thick masonry load					
ii)	230mm thk, upto beam bottom	0.115	18.85	2.4	5.20	KN/m
	Wall Plaster	0.024	20.4	2.4	1.18	KN/m
_			Total		6.38	Say 6.5 KN/m
в	First floor Ivl.					
	230mm Thick masonry load					
i)	230mm thk, upto beam bottom	0.23	18.85	2.83	12.27	KN/m
	vvali Plaster	0.024	20.4	2.83	1.39	KN/M
	445 man Thigh many start		Total		13.66	Say 14 KN/m
	115mm I nick masonry load	0.445	40.05	2.00	0.40	1/hl/m
ii)	230mm tnk, upto beam bottom	0.115	18.85	2.83	0.13	KN/M
	VVall Plaster	0.024	20.4	2.83	1.39	KN/M
	Deven et well (hele en v)		Total		1.52	Say o Kin/m
iii)	115mm the 000mm beight	0.115	40.05	0.0	4.05	IZNU:
	TTSMM tnk, 900mm height	0.115	C0.01	0.9	1.95	KIN/III
	Wall Plaster	0.024	20.4	0.9	0.44	KN/m
	Flags (Olab) laged 405mm this		Total		2.39	Say 2.5 KN/m
	125mm thk slab	0.125	25		3 13	KN/Sam
iv)	Flooring 105mm thk.		20		0.10	
,	cement mortar 65mm thk	0.065	20.4		1.33	KN/Sqm
	40mm thk Kota stone	0.04	Z3.25 Total		0.93 5.38	Say 5 5 KN/Som
			Total		0.00	our olo ravoqui
0	Second & Third floor lyl					
	230mm Thick masonry load					
iì	230mm thk, upto beam bottom	0.23	18.85	2.83	12.27	KN/m
"	Wall Plaster	0.024	20.4	2.83	1.39	KN/m
	115mm Thick maconny load		Iotal		13.66	Say 14 KN/m
	230mm thk, upto beam bottom	0.115	18.85	2.83	6.13	KN/m
п)	Wall Plaster	0.024	20.4	2.83	1.39	KN/m
			Total		7.52	Say 8 KN/m
	125mm thk slab	0.125	25		3 13	KN/Sam
	Flooring 105mm thk.	0.120	2.5		0.10	- avoqui
iii)	cement mortar 65mm thk	0.065	20.4		1.33	KN/Sqm
	40mm thk Kota stone	0.04	23.25 Total		0.93	KN/Sqm
	1		Total		5.50	say s.s ruv sqm
D	Terrace floor Ivl.					
	Mumty room					
n	230mm Thick masonry load	0.22	10.05	2.2	0.07	KNIm
9	Wall Plaster	0.23	20.4	2.3	1.13	KN/m
		0.024	Total	2.0	11.10	Say 11.5 KN/m
	Parapet wall					•
	230mm Thick masonry load		40.05		2.02	12011
11)	230mm thk, upto beam bottom Wall Plaster	0.23	18.85	0.9	3.90	KN/m KN/m
	Trai Lastel	0.024	Total	0.3	4.34	Say 4.5 KN/m
ijiN	Floor (Slab) load 125mm thk.					
	125mm thk slab	0.125	25		3 13	KN/Sam

Table 7.1:- load calculation

	Waterproofing 150mm thick (brick coba)	0.15	20.4		3.06	KN/Sqm
			Total		6.19	Say 6.5 KN/Sqm
F	Mumty/Machine floor					
	Floor (Slab) load 125mm thk					
	125mm thk slab	0.125	25		3 13	KN/Sam
i)	Waterproofing 150mm thick (brick	0.125	25		5.15	KN/SqIII
	coba)	0.15	20.4		3.06	KN/Sqm
			Total		6.19	Say 6.5 KN/Sqm
2	LIVE LOAD - IS 875 (Part-2)					
			1	1		
Α	First floor					
i)	All rooms, Kitchen, toilet and bathrooms				2	KN/Sqm
ii)	Corridor, passages, staircases including fire escape and store rooms				3	KN/Sqm
в	Second floor					
	Eloor Slab (Typical floors)					
	All rooms Kitchen toilet and				_	1010
)	bathrooms				2	KN/Sqm
			Total		2.0	Say 2 KN/Sqm
ii)	Corridor, passages, staircases including fire escape and store rooms				3	KN/Sqm
	<i></i>		Total		3.0	Say 3 KN/Sqm
С	Terrace floor					
i)	Terrace				1.5	KN/Sqm
			Total		1.5	Say 1.5 KN/Sqm
	Manada Garan					
D D	Mumty floor				10.05	1010
)	Water tank load		10	1.2	12.00	KN/Sqm
			Iotal		12.00	Say 12 KN/Sqm
E	Machine room		1			
i)	Live load				7 5-10	KN/Sam
.,	Erroroud		Total		10.00	Say 10 KN/Sqm

7.3 Staircase Loading. Loading Per Meter Width of Flight

 $\begin{array}{ll} R{=}150, \ T{=}250, \ Hence \ Sqrt \ ((150)^2{+}(250)^2)) = 291.5 \cong 292 mm \\ Waist \ Slab & = [0.150 \ x \ 292 \ x \ 25]/250 \\ & = 4.38 \ KN/Sqm \\ Steps & = (0.150 \ x \ 25)/2 \\ & = 1.875 \ KN/Sqm \\ Finishing & = 1 \ KN/Sqm \\ Total & = 7.3 \ KN/Sqm \cong 7.5 \ KN/Sqm \end{array}$

7.4 Earthquake/Seismic Loads

Assessment of earthquake loading is performed in accordance with the requirements of IS: 1893-2016. You'll find Bangalore in Zone-III. The following considerations are made:

Seismic loads and how they are distributed across the building's height and throughout its numerous lateral load resisting parts as per the design.

	BA	SIC LOAD CA	LCUI	LATIONS		
Projec	t : Live Project					
Locati	on : Bangalore					
	DESCRIPTIONS	CA	LCUL	ATIONS	REMARKS	
1	SEISMIC LOAD - IS 1893 (Part-	1) : 2016				
	Zone Factor	0.1	16		Table -3	
A	Importance factor	1			Table -8	
	Response Reduction Factor	5	5		Table -9	
	Time Period Calculation	T= (0.09xh)/ Sqrt	t (d)		clause 7.6.2 ©	
	Height of the building =	16.9	902 I	m		
_	Base dimension of building at plinth level (d _x) =	19.	89	m		
в	Base dimension of building at plinth level (d _z) =	10.	83	m		
	Time period in X Direction $(T_x) =$	0.3	34 ;	sec		
	Time period in Z Direction (T_z) =	0.4	46	sec		

Table 7.2 Seismic Load Calculations

Table: 7.2 Covers For Structural Elements

Structural Element	Nominal Cover to all IS 456:200	reinforcement (as per 0)	Nominal Cover Provided
	For Moderate Exposure condition	For Fire Resistance of 2.0 hrs .	
Beams	25mm	30mm	30mm
Slab	20mm	25mm	25mm
Columns	40mm	40mm	40mm
Footings	50mm		50m

Clause 21 of IS 456-2000 specifies minimum sizes for fire-resistant reinforced concrete members. Table: 7.3 MINIMUM DIMENSIONS OF REINFORCED CONCRETE

1222	5.00052	1272/	122.9-3	Colum	n Dimension (l	borD)	Mini	mum Wall Thickne	1.5
Fire Resis- tance h	Minimum Beam Width b	Rib Width of Slabs b	Minimum Thickness of Floors D	Fully Exposed	50% Exposed	One Face Exposed	p<0.4%	0.4%≤₽≤1%	p>1%
	mm	mm	mm	mm	mm	mm	ITATO	mm	mm
0.5	200	125	75	150	125	100	150	100	100
1	200	125	95	200	160	120	150	120	100
1.5	200	125	110	250	200	140	175	140	100
2	200	125	125	300	200	160	-	160	100
3	240	150	150	400	300	200	-	200	150
4	280	175	170	450	350	240	-	240	180
NOTE	S								
1 Thes 2 <i>p</i> is 1	e minimum d the percentage	imensions re of steel rein	tate specifical	lly to the cove	ers given in Ta	ble 16A.			

According to clause 21 of IS 456 -2000 (table above), minimum beam width for 30 minutes fire resistance is 200 mm and minimum column cover to reinforcement is 40mm. IS 13920-1993 requires 200mm beam width. Clause 7.1.2 requires 200mm columns.

7.5 FOUNDATION SYSTEM

Building footings will be segregated. The foundation will be constructed for 180 KN/m2 Net Safe Bearing Capacity using ETAB Model reaction.

7.6 DETAILING OF STRUCTURES

IS: 456 and SP: 34 detail all structural elements. Detailing should fulfil minimum and maximum R/F and bar spacing criteria.

VIII. MODELING USING ETABS

Step 1: Modeling using ETABS

- 1) Start ETABS
- 2) In the drop-down box at the very right of ETABS, choose kN-m as the model units.

3) Select File>New model.

Change units, steel, and concrete codes and click OK.

Model Initialization		×
Initialization Options		
O Use Saved User Default Settings		0
O Use Settings from a Model File		0
Use Built-in Settings With:		
Display Units	Metric SI	~ 1
Steel Section Database	Indian	~
Steel Design Code	IS 800:2007	~ ()
Concrete Design Code	IS 456:2000	~ ()
ОК	Cancel	

4) The next step is to define the building's data and the building's grid system. Alter the distance between each grid square. Grid spacing and custom storey data are used to determine building height. As seen in drawings.

(e) Uniform Grid Spacing Number of Grid Lines in X Direction Aumber of Grid Lines in X Direction Agaching of Grids in X Direction Spacing of Grids in X Direction Specify Data for Grid Lines Coustom Story Data Specify Data for Grid Lines East Grid Data Coustom Story Data Specify Custom Story Data <th></th> <th></th> <th>Story Dimensions</th> <th></th>			Story Dimensions	
Number of Gird Lines in X Direction 4 Number of Gird Lines in X Direction 4 Spacing of Girds in X Direction 8 m Bottom Story Height 3 Spacing of Girds in X Direction 8 m Specify Gird Labeling Options Gird Labelin. • C Listem Gird Spacing • Custem Story Data Specify Data for Gird Lines Eat Gird Data Specify Custom Story Data	Uniform Grid Spacing		Simple Story Data	
Number of Girld Lines in Y Direction 4 Typical Stary Height 3 Specing of Girld in X Direction 8 m Bettom Story Height 3 Specing of Girld x In X Direction 8 m Bettom Story Height 3 O Custom Girld Specing Girld Labels O Custom Story Data Custom Story Data Specify Data for Girld Lines Exit Girld Data Specify Custom Story Data Exit Story Data	Number of Grid Lines in X Direction	4	Number of Stories	4
Specing of Grids in X Direction Sector of Grids in X Direction Sector Grids in X Direction Sector Grids Data Sector Grids for Grid Labels O Custom Grid Specing Sector Grids for Grid Labels C Custom Story Data Sector Grids for Grid Labels C Custom Story Data Sector Grids for Grid Labels C Custom Story Data Sector Grids for Grid Labels C Custom Story Data Sector Grids for Grid Labels C Custom Story Data Sector Grid Labels C Custom Story Data Sec	Number of Grid Lines in Y Direction	4	Typical Story Height	3
Spacing of Girds in Y Direction Specify Gird Labeling Options Custom Gird Spacing Specify Data for Gird Lines Edit Gird Data Specify Custom Story Da	Spacing of Grids in X Direction	8 m	Bottom Story Height	3
Specify Grid Labeling Options Grid Labeling. O Custom Grid Spacing Specify Data for Grid Lines Edit Grid Data Add Structural Objects I I I I I I I I I I I I I I I I I I I	Spacing of Grids in Y Direction	8 m		
O Custom Grid Spacing Specify Data for Grid Lines O Custom Story Data Specify Custom Story Data Add Structural Objects	Specify Grid Labeling Options	Grid Labels		
Specify Data for Grid Lines Edit Grid Data Specify Custom Story Data Edit Shrony Data Add Shrucharal Objects	O Custom Grid Spacing		O Custom Story Data	
	Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Data	Edit Story Data
Blank Grid Only Steel Deck Staggered Truss Flat Slab Flat Slab with Waffle Slab IWo We Perimeter Beams Ribbed	Ad Structural Objects	HILL HILL HILL HILL HILL HILL HILL HILL	Flet Slab Vith Perimeter Beams	Veffle Slab

5) Choose Concrete Frame Design from the "Options" menu's "Preferences" to set the design code. **Command**

Options

Preferences	
<u>⊆</u> olors	•
<u>W</u> indows	
Set Calculator Memory	
Show Tips at Startup	
Show Bounding Plane	
Moment Diagrams on Tension Side	
 Sound 	
Lock Model	Dimensions/Tolerances
Auto Save Model	Steel Examp Design
Show <u>A</u> erial View Window	Concrete Frame Design
 Show Eloating Property Window 	Composite <u>B</u> eam Desig
Show Cross <u>h</u> airs	Shear <u>W</u> all Design
Enhanced Graphics	Reinforcement Bar Size
Reset Toolbars	Live Load <u>R</u> eduction

This will Display the Concrete Frame Design Preference form as shown in the figure.

Design Code	Indian IS 456-2000	
Number of Interaction Curves	24	
Number of Interaction Points	11	
Consider Minimum Eccentricity	Yes	
Gamma (Steel)	1.15	
Gamma (Concrete)	1.5	
Pattern Live Load Factor	0.75	
Utilization Factor Limit	0.95	
		Cancel

6) Click Define > Material Properties, then click Modify/Show Materials, and then click OK to add materials like concrete grade and steel grade by area. The numbers are below.

Materials		Click to:	
A992Fy50		Add New M	aterial
4000Psi A615Gr60		Add Copy of	Material
M25		Modify/Show	Material
1130300		Modily/ Show	
		Delete Ma	atenal
		Canc	el
rial Property Data			
erial Property Data		- Display Color	
erial Property Data Material Name	M25	Display Color Color	
erial Property Data Material Name Type of Material	M25	Display Color Color Type of Design	
rial Property Data Material Name Type of Material © Isotropic © Orthotrop	M25	Display Color Color Type of Design Design	Concrete _
erial Property Data Material Name Type of Material © Isotropic © Orthotrop Analysis Property Data	M25	Display Color Color Type of Design Design Design Property Data (Indian IS 4	Concrete v 156-2000)
erial Property Data Material Name Type of Material Isotropic O Orthotrop Analysis Property Data Mass per unit Volume	M25	Display Color Color Type of Design Design Design Design Property Data (Indian IS of Conc Cube Comp Strength, fck	Concrete v 156-2000)
erial Property Data Material Name Type of Material Isotropic Onthotrop Analysis Property Data Mass per unit Volume Weight per unit Volume	M25 ic 2.4007 23.5616	Display Color Color Type of Design Design Design Property Data (Indian IS - Conc Cube Comp Strength, fck Bending Reinf. Yield Stress, fy	Concrete 456-2000) 25000.] 415000.
erial Property Data Material Name Type of Material Isotropic Onthotrop Analysis Property Data Mass per unit Volume Weight per unit Volume Modulus of Elasticity	M25 Nic 2.4007 23.5616 25000000.	Display Color Color Type of Design Design Design Design Property Data (Indian IS of Conc Cube Comp Strength, fck Bending Reinf, Yield Stress, fy Shear Reinf, Yield Stress, fy	Concrete 456-2000) 25000.] 415000. 415000.
erial Property Data Material Name Type of Material © Isotropic © Orthotrop Analysis Property Data Mass per unit Volume Weight per unit Volume Modulus of Elasticity Poisson's Ratio	M25 ic 2.4007 23.5616 25000000. 0.2	Display Color Color Type of Design Design Design Conc Cube Comp Strength, fck Bending Reinf. Yield Stress, fy Shear Reinf. Yield Stress, fys	Concrete 456-2000) 25000.] 415000. 415000.
erial Property Data Material Name Type of Material Isotropic Onthotrop Analysis Property Data Mass per unit Volume Weight per unit Volume Modulus of Elasticity Poisson's Ratio Coeff of Thermal Expansion	M25 Nic 2.4007 23.5616 2500000. 0.2 9.900E-06	Display Color Color Type of Design Design Design Design Property Data (Indian IS & Conc Cube Comp Strength, fck Bending Reinf. Yield Stress, fy Shear Reinf. Yield Stress, fys Lightweight Concrete Shear Strength Reduc. Fac	Concrete v 456-2000) 25000.] 415000. 415000.

Region	India	\sim
Material Type	Concrete	~
Standard	Indian	~
Grade	M25	~
	UK Cancer	
New Material Pro	perty	
New Material Pro	perty	
New Material Pro Region	perty	~
New Material Pro Region Material Type	perty India Rebar	~
New Material Pro Region Material Type Standard	perty India Rebar Indian	~ ~ ~
New Material Pro Region Material Type Standard Grade	perty India Rebar Indian HYSD Grade 500	~ ~ ~

7) Columns and beams may be defined by selecting Define > Frame section. Click add new property > click rectangle > ok

nC:	Material Properties	
Denne	[™] I Frame Sections	
	Frame Properties Filter Properties List Type All Filter Clear Properties Find This Property B 230X450 C 300X450 C 300X450 C 300X450 C 300X450 C 300X450 C 320X230 IS LB600 ISWB550 PB 230X450	Click to: Import New Properties Add New Property Add Copy of Property Modify/Show Property Delete Property Delete Multiple Properties Convert to SD Section Copy to SD Section Export to XML File

M Frame Property Shape Type			×
Shape Type	Section Shape	Concrete Rectangular 🗸	
Frequently Used Shape Types Concrete	TT	Steel	
Special		Steel Composite	
Section Designer	Auto Select List General		
	ок	Cancel	

Define beam sizes, click Reinforcement, and cover columns with concrete. Checked or planned reinforcement. Prefer checking reinforcement.

General Data					
Property Name		B 230X450			
Material		M25	~		2 🔨
Display Color			Change	2	
Notes		Modify/S	how Notes	•	+
Shape					
Section Shape		Concrete Rectar	ngular 🗸 🗸		
Section Property Source					
Source: User Defined					
Section Dimensions				Property M	odifiers
Depth			450 mm	Modi	fy/Show Modifiers
Width			230 mm	D. C	Janonity Derault
				Reinforcem	nent
				MO	ally/ Show Nebal
					OK
	Show Se	ection Properties			Cancel
	Show Se	ection Properties			Cancel
	Show Se	ection Properties			Cancel
rame Section Proper	Show Se	ection Properties			Cancel
rame Section Proper	Show Se ty Reinforcer	ection Properties ment Data			Cancel
rame Section Proper Design Type	Show Se ty Reinforcer	ection Properties ment Data Rebar N	laterial		Cancel
rame Section Proper Design Type O P-M2-M3 Design	Show Se ty Reinforcer	nent Data	laterial	197500	Cancel
rame Section Proper Design Type O P-M2-M3 Design	Show Se ty Reinforcer n (Column)	nent Data	laterial tudinal Bars HY	'SD500	Cancel
rame Section Proper Design Type O P-M2-M3 Design () M3 Design Only	Show Se ty Reinforcer n (Column) (Beam)	nent Data Rebar N Long Confi	laterial tudinal Bars HY nement Bars (Ties) HY	'SD500	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal 1	Show Se ty Reinforcer n (Column) (Beam) Rebar Group C	ection Properties ment Data Rebar M Long Confi	laterial itudinal Bars HY nement Bars (Ties) HY	'SD500 'SD500 Iverwrites for Duc	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C	ection Properties ment Data Rebar M Longi Confi Centroid mm	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End	SD500 SD500 Verwrites for Duc	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars Bottom Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C 30	nent Data Rebar M Long Confi Centroid mm	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End Top Bars at I-End	SD500 SD500 Vverwrites for Duc	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars Bottom Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C 30	ection Properties ment Data Rebar M Long Confi Centroid mm mm	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End Top Bars at J-End	SD500 SD500 Vverwrites for Duc 0 0	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars Bottom Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C 30	ection Properties ment Data Rebar M Long Confi Centroid mm mm	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End Top Bars at J-End Bottom Bars at I-End	ISD500 SD500 Iverwrites for Duc 0 0 0	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars Bottom Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C 30	ection Properties ment Data Rebar N Long Confi Centroid mm m	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End Top Bars at J-End Bottom Bars at I-En Bottom Bars at J-Er	SD500 SD500 Everwrites for Duc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cancel
rame Section Proper Design Type O P-M2-M3 Design M3 Design Only Cover to Longitudinal I Top Bars Bottom Bars	Show Se ty Reinforcer (Column) (Beam) Rebar Group C 30	ection Properties ment Data Rebar M Long Confi Centroid mm mm	laterial tudinal Bars HY nement Bars (Ties) HY Reinforcement Area O Top Bars at I-End Top Bars at J-End Bottom Bars at I-En Bottom Bars at J-Er	rSD500 SD500 Vverwrites for Duc 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Cancel

aeneral Data		
Property Name	C1 300X450	
Material	M25 Ý.	
Display Color	Change	• •
Notes	Modify/Show Notes	<mark><- ↓</mark> •
Shape		•••
Section Shape	Concrete Rectangular V	• • •
Section Property Source		
Source: User Defined		
Section Dimensions		Property Modifiers
Depth	450 mr	Modify/Show Modifiers
Width	300	Currently Default
		Reinforcement
		<u>Modify/Show</u> Rebar
		OK
Show	v Section Properties	Cancel
Show	v Section Properties	Cancel
Show me Section Property Reinforce	v Section Properties ement Data	Cancel
Show me Section Property Reinforce	ement Data	Cancel
Show me Section Property Reinforce esign Type	ement Data Rebar Material Longitudinal Bars	Cancel
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam)	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties)	HYSD500 HYSD500
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration	Rebar Material Longitudinal Bars Confinement Bars (Ties)	HYSD500 HYSD500 HYSD500 Check/Design
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars () Ties	HYSD500 HYSD500 Check/Design Check/Design O Reinforcement to be Checked
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars () Ties () Spirals	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Image: Reinforcement to be Designed
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ungitudinal Bars	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Image: Reinforcement to be Designed
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ingitudinal Bars Clear Cover for Confinement Bar	rs Section Properties Perment Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Image: Check (Check (Check)) HYSD500 Check (Check) Check (Check) Image: Ch
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ingitudinal Bars Clear Cover for Confinement Bar Number of Longitudinal Bars Ado	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked e Reinforcement to be Designed 40 mm 3
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ingitudinal Bars Clear Cover for Confinement Bar Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Beinforcement to be Designed 40 mm 3 5
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ongitudinal Bars Clear Cover for Confinement Bar Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Longitudinal Bar Size and Area	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals rs ong 3-dir Face ong 2-dir Face 20	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Reinforcement to be Designed 40 mm 3 5 3.1
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ngitudinal Bars Clear Cover for Confinement Bar Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Longitudinal Bar Size and Area Comer Bar Size and Area	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals rs ong 3-dir Face ong 2-dir Face 20 20 20	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Beinforcement to be Designed 40 mm 3 5 3.1 cm² 3.1 cm²
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular orgitudinal Bars Clear Cover for Confinement Bars Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Comer Bar Size and Area Comer Bar Size and Area	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals rs ong 3-dir Face ong 2-dir Face 20 20 20	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Beinforcement to be Designed 40 mm 3 5 3.1 cm² 3.1 cm²
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ngitudinal Bars Clear Cover for Confinement Bars Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Longitudinal Bar Size and Area Comer Bar Size and Area prinement Bars Confinement Bar Size and Area	ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Spirals rs ong 3-dir Face 20 20 20	HYSD500 HYSD500 HYSD500 Check/Design Reinforcement to be Checked Reinforcement to be Designed 40 mm 3 > 3.1 cm² 3.1 3.1 3.1 3.1
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ngitudinal Bars Clear Cover for Confinement Bars Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Comer Bar Size and Area comer Bar Size and Area confinement Bars Confinement Bars Size and Area Longitudinal Spacing of Confine	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Ties Ties Ties Ties Ties Ties Ti	HYSD500 HYSD500 HYSD500 Check/Design Reinforcement to be Checked Reinforcement to be Designed 40 mm 3 5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular orgitudinal Bars Clear Cover for Confinement Bars Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Comer Bar Size and Area Comer Bar Size and Area Confinement Bars Confinement Bars Size and Area Longitudinal Spacing of Confine Number of Confinement Bars in	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Ties Spirals rs ong 3-dir Face 20 20 20	HYSD500 HYSD500 HYSD500 Check/Design Reinforcement to be Checked Reinforcement to be Designed 40 mm 3 5 3.1 3.1 3.1 0.5 0.5 150 3
Show me Section Property Reinforce esign Type P-M2-M3 Design (Column) M3 Design Only (Beam) einforcement Configuration Rectangular Circular ngitudinal Bars Clear Cover for Confinement Bars Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Number of Longitudinal Bars Alo Comer Bar Size and Area Comer Bar Size and Area Confinement Bars Confinement Bars Size and Area Longitudinal Spacing of Confine Number of Confinement Bars in Number of Confinement Bars in	v Section Properties ement Data Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars Ties Ties Ties Ties Ties Ties Ties Ti	HYSD500 HYSD500 HYSD500 Check/Design Check/Design Reinforcement to be Checked Reinforcement to be Designed 40 mm 3 3.1 cm² 3.1 cm² 150 mm 3 3 3 3
8) Define wall/slab/deck.

Special one-way load distribution is used to describe a slab as a membrane or shell thin element and a one-way slab.

Slab-based features may be added or altered.

Slab Properties	×
Slab Property	Click to:
Plank1	Add New Property
Slab125	Add Copy of Property
	Modify/Show Property
	Delete Property
	OK
Slab Property Data	×
General Data	
Property Name	Slab125
Slab Material	M25 ~
Modeling Type	Shell-Thin 🗸
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Property Data	
Туре	Slab 🗸
Thickness	125 mm
ОК	Cancel

9) Generate the model

Make instructions for a line and a column to sketch a beam and a column.

1	<u>S</u> elect Object			Draw Lines (Plan, Ele	v, 3D)
₽	<u>R</u> eshape Object		1	Create Lines in <u>R</u> egio	n or at Clicks (Plan, Elev, 3D)
(e)	Draw Point Objects			Create Columns in Re	gion or at ⊆licks (Plan)
	Draw Line Objects	•		Create <u>S</u> econdary Be	ams in Region or at Clicks (Plan)
	Draw <u>A</u> rea Objects	•	ж	CreateBracesinRegion	1
4	Draw Developed, Elevation Definition		Prop	erties of Object	×
	Draw Section Cut		Тур	be of Line	Frame
			Pro	perty	B300×450
×	Draw Di <u>m</u> ension Line		Mo	ment Releases	Continuous
\times	Draw Reference P <u>o</u> int		Pla	n Offset Normal	0.
	Snap to	•			

There are three ways to make a slab: (1) draw an area of any form; (2) draw a rectangular area; or (3) make an area in between grid lines.

The above choice created the model shown below.

Go to define > load pattern > click

11) Seismic force calculation as per IS: 1893(Part 1) - 2002.

(a) Static Method

Create the model, analyse and design it (RCC design), and then verify it.

Break the model and define seismic load patterns as indicated below.

oads				Click To:	
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load	
EQX	Seismic	~ 0	IS1893 2002	Modify Load	
Dead	Dead	1			
Live	Live	0		Modify Lateral Loa	d
#I	Super Dead	0			
EQX	Seismic	Ŭ Ŭ	IS1893 2002	Delete Load	
EQY	Seismic	0	IS1893 2002		

Dead Load: default self weight multiplier is 1. Live or other defined load

Access the definition of static load by selecting Define > Static load. Please adjust the lateral load to the amount provided below, and assign a different value in accordance with IS 1893-2005.

Direction and Eccentricity		Seismic Coefficients		
🗹 🗙 Dir	Y Dir	Seismic Zone Factor, Z		
X Dir + Eccentricity	Y Dir + Eccentricity	Per Code	0.16	~
X Dir - Eccentricity	Y Dir - Eccentricity	Iter Defined		
Ecc. Batio (All Diaph.)		O User Delined		
Oursenite Feedball	Quantita	Site Type	11	~
Overwrite Eccentricities	Overwrite	Importance Factor, I	1	
Story Range		Time Period		
Top Story	MUMTY LVL 🗸 🗸	Approximate	Ct (m) =	
Bottom Story	PL <mark>INTH FL</mark> LV 🗸	Program Calculated		
		O User Defined	Τ =	se
ractors				
Response Reduction, R)	OK	Cancel	
Response Reduction, R	dian IS1893:2002	OK	Cancel	
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity	dian IS1893:2002	OK Seismic Coefficients	Cancel	
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity	dian IS1893:2002	OK Seismic Coefficients Seismic Zone Factor, Z	Cancel	
Response Reduction, R ismic Load Pattern - Inc Direction and Eccentricity X Dir X Dir X Dir + Eccentricity	dian IS1893:2002	Seismic Coefficients Seismic Zone Factor, Z Per Code	Cancel	
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity X Dir - Eccentricity	dian IS1893:2002	Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined	0.16	v
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity X Dir - Eccentricity Ecc. Ratio (All Diaph.)	dian IS1893:2002	Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined	0.16	
Response Reduction, R ismic Load Pattern - Inc Direction and Eccentricity X Dir X Dir + Eccentricity X Dir - Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	dian IS1893:2002	OK Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type	0.16	~
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity X Dir + Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	dian IS1893:2002	Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I	0.16 11 1	~ ~
Response Reduction, R iismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity Corec. Ratio (All Diaph.) Overwrite Eccentricities Story Range	dian IS1893:2002 ✓ Y Dir Y Dir + Eccentricity Y Dir - Eccentricity Overwrite	OK Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I Time Period	0.16 11 1	~
Response Reduction, R ismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity Corewrite Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities Story Range Top Story	dian IS1893:2002	OK Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I Time Period Approximate	Cancel	~
Response Reduction, R iismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity C X Dir + Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities Story Range Top Story Bottom Story	dian IS1893:2002	OK Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I Time Period Approximate Program Calculated	0.16 11 1 Ct (m) =	
Response Reduction, R iismic Load Pattern - Ind Direction and Eccentricity X Dir X Dir + Eccentricity Cc. Ratio (All Diaph.) Overwrite Eccentricities Story Range Top Story Bottom Story	dian IS1893:2002	OK Seismic Coefficients Seismic Zone Factor, Z Per Code User Defined Site Type Importance Factor, I Time Period Approximate Program Calculated User Defined	Cancel 0.16 11 1 Ct (m) = T =	

load combination, envelope, and model. Show tables and record these values after analysing the structure: 1. The Story Drift must not be more than 0.004 times the height of the storey.

The most extreme base reaction, FZ (When you're through, compare this number to the results of a straightforward analysis.)

12) Assigning the live , dead, ffl, and wall load

Click the assign button once you have chosen the person to whom this load will be assigned. Assign > shell area loads > uniform > click ok

Load Pattern Name	Live	~
Uniform Load	kN/m²	Options Add to Existing Loads
Direction Gravity ~		 Replace Existing Loads Delete Existing Loads

Frame load Assignment> uniformly spread Add the load pattern to existing loads > uniform load > ok > member element > ok.

Load Pattern Name	wall ~
ead Type and Direction Forces O Moments Direction of Load Application Gravity	Options Add to Existing Loads O Replace Existing Loads O Delete Existing Loads
Tapezoidal Loads	2. 3. 4. 0.75 1 0 kN/m am End-1 Absolute Distance from End-1

13) Assign support condition

In the ETABS window's lower-right drop-down menu, choose the level you want to give the fixed support for using the "Create One Storey" button.

assign > Joint/Point>Restrain (Support) command> fixed one storey bottom left corner and assign

Assign Restraints	_
Restraints in Global Directions	
▼ Translation X ▼ Rotation about X	
▼ Translation Y ▼ Rotation about Y	
▼ Translation Z ▼ Rotation about Z	
Fast Restraints	
OK Cancel	

14) Assigning the diaphgram

Earthquake analysis treats slabs as rigid members. First, diaphragm action is applied to all slabs for stiff or semi-rigidity.

"Analysis and Design of G+3 Building Using ETABS"

13) Meshing of Slabs

Select all of the slabs that will be used in the analysis (F5), then go to the Analyze menu, select Automatic rectangular mesh settings for floor, and then click on the Mesh customisation panel. For best results, set the meshing size to 0.6 from the usual 1.25.

Ose Ecclared Medining Merge Joints Where Possible Mesh Size Approximate Maximum Mesh Size 1.25 m mportant Note These settings apply to all floor-type shell objects in the model that use auto rectangular meshing.	Viesn Options		
Mesh Size Approximate Maximum Mesh Size 1.25 m mportant Note These settings apply to all floor+type shell objects in the model that use auto rectangular meshing.	Merge Joints Where Possible		
Approximate Maximum Mesh Size 1.25 m mportant Note These settings apply to all floor-type shell objects in the model that use auto rectangular meshing.	Mesh Size		
mportant Note These settings apply to all floor-type shell objects in the model that use auto rectangular meshing.	Approximate Maximum Mesh Size	1.25	m
These settings apply to all floor-type shell objects in the model that use auto rectangular meshing.	Important Note		
	These settings apply to all floor-type sl use auto rectangular meshing.	nell objects in the r	model that

14) Assigning end release

Assign>frame>partial fixity> then as indicated in figure. Frame Assignment - Releases/Partial Fixity

	Rele Start	ase End		Frame Par Start	tial Fixity Springs End	
Axial Load						kN/m
Shear Force 2 (Major)						kN/m
Shear Force 3 (Minor)						kN/m
Forsion						kN-m/rad
Moment 22 (Minor)			0		0	kN-m/rad
Moment 33 (Major)			0		0	kN-m/rad
No Releases						

15) Load Combinations

If you want full creative control over your ideas, it's advisable to create your own load combination rather than rely on ETABS's proposed "UDCON2" load combination for dealing with the partial safety problem. Load combinations are created as follows.

Define——>Load Combinations——> Click add new combination in that window.

Combinations	Click to:
	Add New Combo
	Add Copy of Combo
	Modify/Show Combo
	Delete Combo
	Add Default Design Combos
	Convert Combos to Nonlinear Cases

After clicking Add new combination, the safety factor window displays as shown below/next page (1 for DL and 1.5 for LL). The model may be analysed for post-processing outcomes when all load allocations and combinations are defined.

	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
Load Combination Name	Factored
Combination Type	Linear Add
Notes	Modify/Show Notes
Auto Combination	No
Live	1.5 Delete

16) Define>mass source defines mass source. IS: 1893-2002 requires 25% live load (of 3 kN/m2) on all floors excluding roof.

Element Self	Mass		
Additional Ma	ss ad Patterns		
Define Mass Multipl	ier for Loads		
Load		Multiplier	
EQY	~ 1		
Dead	1		Add
Live	0	.25	Add
wall	1		Modify
EQX	1		
EQY	1		Delete
Un <mark>c</mark> lude Late	ral Mass Onh Il Mass at Sto	/ ory Levels	

17) Run analysis from **Analysis > Run Analysis command**

	X Warning X
Length Tolerance for Checks Length Tolerance for Checks 1 mr	Model has been checked. No warning messages were generated.
Joint Checks	
Joints/Joints within Tolerance	
Joints/Frames within Tolerance	
Joints/Shells within Tolerance	
Frame Checks	
🗹 Frame Overlaps	
Frame Intersections within Tolerance	
Frame Intersections with Area Edges	
Shell Checks	
Shell Overlaps	
Other Checks	
🗹 Check Meshing for All Stories	
Check Loading for All Stories	
OK	

18) Concrete Design

Click Design -> Concrete Frame Design -> Start Design / Check (Shortcut sft + F6) to begin concrete designing once you have finished modelling, allocating loads, and analysing load combinations. This will confirm your post-processing results (SFD & BMD).

The structural evaluation and design process results in a design model that looks like the one shown below.

Design > Concrete Frame Design > Display Design Information shows steel percentages and column beam steel areas.

Dienter Design Desults		
Display Design Results		
Design Output	Rebar Percentage	-
	Longitudinal Reinforcing Rebar Percentage	
C Design Input	Shear Reinforcing Column P-M-M Interaction Ratios	
	Beam/Column Capacity Ratios Column/Beam Capacity Ratios	
	General Reinforcement Details	

X m

0

-5.47E-07

Y m

0 0

0

0

		Г] Show <u>U</u> n Show Loa	deformed Sh ads	аре	•		
		F F	- 7 Show <u>D</u> e ∮ Show <u>M</u> a ∲ Show Me	formed Shap de Shape mber <u>F</u> orces	oe /Stress Diagra	m •		
		5	- Show <u>E</u> ne	ergy/Virtual '	Work Diagram.			
			Show <u>R</u> e: Show <u>T</u> im	sponse Spec ne History Tr atic Pushovei	trum Curves aces Curve	,		
_	s - 1	-	Show Sta	ory Response	Plots			
	usbla.	Y 📋	Show Ta	oles				
Cho	ose Tables	for Displa	y					
Edit	:							
		I Definition I Definition Assignment Assignment Design I gn Overwin ons/Prefer cellaneous SIS RESU lacements Clions al Informa iliding Mode iliding Mode iliding Mode iliding Mode iliding Output the Output Output acts and E	ns ents ents ents ites rites rences Da Data LTS (1 o tions tion s il Informatio at at	ata of 26 table	es selected)			
	Base Reactions							
14 4	1 of 20	Reload	Apply					
	Load Case/Combo	FX kN	FY kN	FZ kN	MX kN-m	MY kN-m	MZ kN-m	
•	Dead	0	0	6018.7349	46450.9021	-35807.7929	0	0
	Live	0	0	1540.5187	13013.126	-8164.6082	0	0
	Ħ	0	0	900.414	7615.4091	-4813.744	0	0

0 The above figure shows total load acting on buling .

0

19) Dimensions of time and the mode of occupancy in the X and Y axes of the structure.

43185.9146

• According to the IS 1893, the time period is 0.075H0.75, which is equal to 0.34 seconds in the X-direction and 0.46 seconds in the Y-direction.

-25839.8708

Select Display > Show Mode Shape to see the time period in ETABS.

5063.889

wall

Z

0

0 0

0

Your are able to see the proportion of the total population that is actively participating in the model by choosing Display > Show Table > Model Information > Building Model Information > Model Participating Ratio from the drop-down menu.

	Reg Modal Participating Mass Ratios												
14 - 4	4 4 1 of 30 🕨 Mada Participating Mass Ratios												
	Case	Mode	Period sec	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX
۶.	Modal		0.96	0.2041	0.2866	0	0.2041	0.2866		0.0663	0.0459	0.3389	0.0663
	Modal		0.67	0.4838	0.2375	0	0.688	0.5241		0.0859	0.1991	0.0104	0.1522
	Modal			0.0487			0.7366				0.0436	0.4435	0.2734
	Modal	4	0.308	0.0296	0.0441	0	0.7662	0.7953		0.1583	0.1158	0.0199	0.4317
	Modal	5	0.18	0.0032	0.0074	0	0.7694	0.8027		0.0157	0.0045	0.0169	0.4474
	Modal			0.0998			0.8693			0.1987	0.244	3.526E-06	0.6461
	Modal		0.135	0.015	0.0078	0	0.8843	0.8804		0.0274	0.039	0.0028	0.6735
	Modal				0.0587		0.9042	0.9391			0.0406		0.8084
	Modal	9	0.126	0.0005		0	0.9047	0.9391		0.0001	0.0001	0.0178	0.8085
	Modal			0.0081	0.0011		0.9128	0.9402		0.0041	0.0218	0.0001	0.8126
	Modal	11	0.112	0.0053	0.0065	0	0.9182	0.9467		0.0192	0.0094	0.0049	0.8318
	Modal	12	0.111	0.0019	0.0051	0	0.9201	0.9517	0	0.0201	0.0027	0.0001	0.8519
	Modal	13	0.099	0.0019	0.0003	0	0.922	0.952		0.0014	0.0029	3.164E-05	0.8533

20) Design check

The sixth step is to build a model and load combinations and envelope. Analyze results

Seventh, verify the aforementioned outcomes

The greatest possible drift between floors is 0.004, or 0.004 times the floor height.

You should use the Equivalent Static/Linear Static Method if your Base Reaction FZ is more than the Maximum. Third, the total mass participation in the x and y modalities must equal at least 90 percent of the lateral loads in order for this condition to be met.

Fourth, verify the mode shapes or distorted forms; the first three should represent x or y changes.

If the following requirements hold true in the response spectrum analysis, the model may be considered stable and unaltered.

Additional Points and Notes :-

1. The limitations of storey drift are specified in IS 1893-2002. (Part-1) Clause 7.11.1

Time periods must be manually determined for determining the load pattern in comparable static analysis; the method for doing so varies depending on the kind of building being analysed.

Page 24 of IS 1893-2002, Part-1, Clauses 7.6.1 and 7.6.2.

Page 25 of IS 1893-2002, Part-1, contains the comparative information of the base reactions. 4. For information on accommodating soft storeys, please see Clause 7.10.1 on Page 27 of IS 1893-2002.

21)Left-click any beam member to see below figure.

The figure illustrates the Pu-Mu interaction curve as well as shear, flexural, and beam/column features.

ETABS 2013 Concrete Frame Design IS 456:2000 Column Section Design

Column Element Details Type: Ductile Frame (Flexural Details)

Level	Element	Section ID	Combo ID	Station Loc	Length (mm)	LLRF
PLINTH FL LVL	C6	C1 300X450	DCon2	1650	2100	0.534

Section Properties

b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)
300	450	58	30

Material Properties

E₀ (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)					
25000	25	1	500	500					
	Axial Force and Biaxial Moment Design For Put Mu2 , Mu3								

Design P _u	Design M _{u2}	Design M _{u3}	Minimum M ₂	Minimum M ₃	Rebar Area	Rebar %
kN	kN-m	kN-m	kN-m	kN-m	mm²	%
1456.7401	1.1705	-29.1348	29.1348	29.1348	1080	0.8

Factored & Minimum Biaxial Moments

	NonSway M _{ns} kN-m	Sway M₅ kN-m	Factored M _u kN-m
Major Bending(Mu3)	-9.4361	0	-9.4361
Minor Bending(Mu2)	1.1705	0	1.1705

Slenderness Effects (IS 39.7.1) and Minimum Biaxial Moments (IS 39.2, 25.4)

	End Moment	End Moment	Initial	k*M₃	Minimum	Minimum
	M _{u1} (kN-m)	M _{u2} (kN-m)	Moment (kN-m)	Moment (kN-m)	Moment (kN-m)	Eccentricity (mm)
Major Bending (M ₃)	1.7434	-9.4361	-4.9643	0	29.1348	20

	K Sway	K Non-Sway	Framing Type	P-Delta Done?	Q Factor	K Used
Major Bend(M ₃)	1.603615	0.72758	Ductile Frame	No	0.006397	0.72758
Minor Bend(M ₂)	1.529941	0.708686	Ductile Frame	No	0.007429	0.708686

Effective Length Factors (IS 25.2, Annex E)

Additional Moment Reduction Factor k (IS 39.7.1.1)

A _g cm²	A₅c cm²	P _{uz} kN	P₀ kN	Pu kN	k Unitless
1350	10.8	1923.75	599.0777	1456.7401	0.352548
	Ac	ditional M	oment (IS 3	9.7.1)	

	Consider Ma	Length Factor	Section Depth (mm)	KL/Depth Ratio	KL/Depth Limit	KL/Depth Exceeded	M₃ Moment (kN₋m)
Major Bending (M ₃)	Yes	7.857E-07	0.0005	2.668E-06	1.2E-05	No	0
Minor Bending (M ₂)	Yes	7.857E-07	0.0003	3.898E-06	1.2E-05	No	0

Column Element Details Type: Ductile Frame (Shear Details)

Level	Element	Section ID	Combo ID	Station Loc	Length (mm)	LLRF					
PLINTH FL LVL	C6	C1 300X450	DCon2	1650	2100	0.534					
	Section Properties										

b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)
300	450	58	30

Material Properties

E₀ (MPa)	fck (MPa)	Lt.Wt Factor (Unitless)	fy (MPa)	f _{y≋} (MPa)
25000	25	1	500	500

Design Code Parameters

Additional Moment Reduction Factor k (IS 39.7.1.1)

-

A _g	A₅c	P _{uz}	P _b	Pu	k
cm²	cm²	kN	kN	kN	Unitless
1350	10.8	1923.75	599.0777	1456.7401	0.352548

Additional Moment (IS 39.7.1)

	Consider	Length	Section	KL/Depth	KL/Depth	KL/Depth	Ma				
	Ma	Factor	Depth (mm)	Ratio	Limit	Exceeded	Moment (kN-m)				
Major Bending (M ₃)	Yes	7.857E-07	0.0005	2.668E-06	1.2E-05	No	0				
Minor Bending (M ₂)	Yes	7.857E-07	0.0003	3.898E-06	1.2E-05	No	0				
	Shear Design for V _{u2} , V _{u3}										

	Rebar A _v /s mm²/m	Design V _u kN	Design P _u kN	Design M _u kN-m	<mark>X₀</mark> kN	V₅ kN	<mark>V₀</mark> kN
Major Shear(V ₂)	0	0	0	0	0	0	0
Minor Shear(V ₃)	498.8	1.7395	1456.7401	1.1705	79.69	43.5594	123.2494

		KN-M
6.7755	1456.7401	-9.4361
1.7395	1456.7401	1.1705
	6.7755 1.7395 Design	6.7755 1456.7401 1.7395 1456.7401 Design Basis

Design Forces

Shr Reduc Factor	Strength f _{ys}	Strength f _{ck}	Area A _g
Unitless	MPa	MPa	cm²
1	415	25	1350

Concrete Shear Capacity

Major Shear(V ₂)	Conc.Area A _c cm²	A _{st} %	Allowable Tau₀ MPa	CompFactor Delta Unitless	DepthFactr k Unitless	Strengh Factor Unitless
Major Shear(V ₂)	0	0	0	0	0	0
Minor Shear(V3)	1089	0.496	0.488	1.5	1	1

Shear Rebar Design

	Design V _u kN	Stress Tau MPa	Conc.Cpcty Tau _{cd} MPa	Allowable Tau _{c,max} MPa	Rebar Area A _{sv} /s mm²/m
Major Shear(V ₂)	0	0	0	0	0
Minor Shear(V ₃)	1.7395	0.02	0.73	3.1	498.8

ETABS 2013 Concrete Frame Design IS 456:2000 Beam Section Design

Beam Element Details Type: Ductile Erame_(Flexural Details)

Level	Element	Section ID	Combo ID	Station Loc	Length (mm)	LLRF
PLINTH FL LVL	B25	PB 230X450	DCon2	4822	4972	1

Section Properties

b (mm)	h (mm)	b _r (mm)	d₃ (mm)	d _{ct} (mm)	dc₀ (mm)	
230	450	230	0	30	30	

Material Properties

E₀ (MPa)	fck (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)	
25000	25	1	500	500	

Design Code Parameters

Flexural Reinforcement for Moment, Mus & Tu

	Required Rebar mm²	+Moment Rebar mm²	-Moment Rebar mm²	Regular Minimum Rebar mm²	Seismic Minimum Rebar mm²
Top(+2 Axis)	248	0	203	176	248
Bottom (-2 Axis)	101	0	0	0	101

Design Moments, Mus & Tu

Design	Design	Factored	Torsion	Special
+Moment	-Moment	M _{us}	Tu	Mt
kN-m	kN-m	kN-m	kN-m	kN-m
0	-35.4346	-34.6646	0.4427	0.77

Level	Element	Section ID	Combo ID	Station Loc	Length (mm)	LLRF		
PLINTH FL LVL	B25	PB 230X450	DCon2	4822	4972	1		
Section Properties								

Beam Element Details Type: Ductile Frame (Shear Details)

b (mm)	h (mm)	br (mm)	d₀ (mm)	d _{ct} (mm)	d₀₀ (mm)
230	450	230	0	30	30

Material Properties

E₀ (MPa)	fck (MPa)	Lt.Wt Factor (Unitless)	fy (MPa)	f _{y≋} (MPa)
25000	25	1	500	500

Design Code Parameters

¥c	¥s
1.5	1.15

_

Shear/Torsion Design for Vu2 & Tu

Rbar	Rbar	Design	Design	Design
A₅v /s	A _{svt} /s	V _{u2}	Tu	Pu
mm²/m	mm²/m	kN	kN-m	kN

Design Forces

Factored Vu2	Factored Tu	Equivalent V₀
kN	kN-m	kN
43.0429	0.4427	46.1229

Design Basis

Design	Conc.Area	Area	Tensn.Reinf	Strength	Strength	LtWt.Reduc
V _{u2}	A₀	A _g	A₅t	f _{y∎}	f _{ck}	Factor
kN	cm²	cm²	mm²	MPa	MPa	Unitless
43.0429	966	1035	263	415	25	1

Concrete Capacity

Conc.Area Ac	Tensn.Rein A₅t	A _{st}	Allowable Tau _{c.max}	Strength fys	CompFactor Delta	DepthFactr k	Strengh Factor
cm²	mm²	%	MPa	MPa	Unitless	Unitless	Unitless
966	263	0.272	0.371	415	1	1	1

Shear Rebar Design

Design	Stress	Conc.Cpcty	Allowable	Rebar Area	Shear	Shear	Shear
V₀	Tau	Taucd	Tau _{c.max}	A₅v /s	Ve	V₃	Vo
kN	MPa	MPa	MPa	mm²/m	kN	kN	kN
46.1229	0.48	0.37	3.1	254.94	35.8804	38.64	74.5204

Torsion Capacity

1001700 KN-00 KN 1000 1000	Rebar	Torsion	Shear	Core	Core
	A₃vt /s	Tu	Vu	b ₁	d ₁
	mm²/m	kN-m	kN	mm	mm

221.69	0.4427	43.0429	190	410

_

VIII. STRUCTURAL ANALYSIS AND DESIGN

8.1 General

Structural engineering researches, plans, designs, builds, inspects, monitors, maintains, rehabs, and demolishes permanent and temporary structures, structural systems, and their components. Structural design evaluates stability, strength, and stiffness. Structural analysis and design create structures that can sustain all loads over their lifetime. Structures bear loads. If the structure is poorly designed or built, or if the applied loads exceed the design constraints, the device may fail to fulfil its intended purpose, which might be devastating.

8.2 IMPORTANT POINTS FOR BEAMS

• For grades Fe 415 and Fe 500, maximum tension bar spacing is 180 mm and 150 mm, respectively.

• Ast = 0.85bd/fy for beam tension reinforcement. Maximum tension and compression reinforcement in beams is Ast < 0.04bd.

• The clear span between lateral supports of a simply supported or continuous beam should be no more than 60 b or 250 b2/d.

• Cantilevers must have a clear space of 25 b or 100 b2/d from the free end to the lateral constraint.

• For vertical stirrups, shear reinforcement must not exceed 0.75d along the member's axis, where d is the section's effective depth. Never surpass 300mm.

Asv/b.Sv < 0.4/fy must be given by stirrups.

Where,

Asv = total cross sectional area of stirrup legs effective in shear

- Sv = stirrup spacing along the length of the member
- b =width of the beam
- fy = should not be more than 415 N/mm²

Positive moment reinforcement

i. Simple members require Ld/3 of the positive moment reinforcement along the same face into the support, whereas continuous members need Ld/4.

ii. The positive reinforcement that must be extended into the support in accordance with (a) must be anchored such that it produces its design stress in tension at the support face when the flexural member is part of the principal system for withstanding lateral loads.

iii. At inflection points and simple supports, reinforcing positive moment tension must be less than M1/V + Lo. Where, M1 = moment of resistance if all reinforcement is strained to fd

- fd = 0.87 fy in the case of limit state design and the permissible stress
 - in the case of working stress design σ st
- V = shear force at the section due to design loads

Lo = sum of the anchoring beyond the centre of the support and the support provided by any hook or mechanical attachment. At inflection, Lo cannot exceed 12 or the effective depth of the members, whichever is larger. Crushing the reinforcing ends increases the bar's diameter by 30% to the M1/V ratio.

Negative moment reinforcement

i. At the point of inflection, one-third of the negative moment reinforcement at the support must extend outward for a distance equal to or more than the effective depth of the member by 12, which is one sixteenth of the clear span.

• Curtailment of tension reinforcement in flexural members

i. Except for the simple support or cantilever end, reinforcement must continue beyond the point at which it no longer resists flexure for the effective depth of the member or 12 times the bar diameter, whichever is larger. This criteria does not applicable when the reinforcement cannot withstand flexure.

ii. Any of the following in a stress zone requires flexural reinforcement removal.

a. At the cutoff point, shear strength is two-thirds of the maximum allowed (this includes the web

reinforcement). Web reinforcement limits shear at the cutoff point.

b. Each terminated bar has stirrup area greater than shear and torsion for three fourths the member's effective depth from the cutoff point. The extra stirrup area must be at least 0.4bs/fy, where b is beam width, s is spacing, and fy is reinforcing strength in N/mm2. The spacing must not exceed $d/8\beta b$, where βb is the ratio of bars chopped off to total bars at the section and d is the effective depth.

c. For bars with a diameter of 36 millimetres or less, continuing bars offer twice as much room as needed for flexure at the point where they are cut off, and the shear does not exceed three quarters of what is allowed.

• Lap splices

i. In order to join bars larger than 32mm, welding or mechanical splicing is required.

ii. For bars in flexure tension, the lap length is Ld or 30, whichever is bigger; for bars in direct tension, the lap length is 2Ld or 30, whichever is greater. The minimum length of the lap is 15 inches (or 200mm).

iii. Compression lap length should equal development lap length (as calculated in 26.2.1), but not be less than 24. iv. Joining 2-inch-gap bars. The shorter bar's diameter determines lap length.

• Temperature, creep, and shrinkage after drywall and finishes are completed shouldn't be more than span/350, or 20 mm.

• Most of the time, the ultimate deflection owing to all loads (temperature, creep, and shrinkage) should not exceed effective span/250, measured from the floor supports' as cast level.

"Analysis and Design of G+3 Building Using ETABS"

8.2 IMPORTANT POINTS FOR SLABS

If a slab extends in many directions, choose the shortest route to calculate its span-to-effective depth ratio.
The span-to-depth ratio below should meet vertical deflection requirements for loads up to 3 kN/m2 in two-way slabs reinforced with mild steel and shorter spans (up to 3.5 m).Continuity 35, Structures That Are Supported By Slabs Simply multiplying by 0.8 will provide you the high strength Fe 415 warped bars you need.
The figure takes into account loads that are equally distributed when depicting beams that support solid slabs that span in two different directions at right angles. below.

• Major reinforcing bar spacing on the horizontal plane must not exceed 300 mm or three times the effective depth of the solid slab.

• Shrinkage and temperature impacts need minimum strengthening of slabs. Mild steel reinforcement at the rate of 0.15 percent in both directions is required for slabs. When using high-strength bent bars, that percentage drops to 0.12%.

• Reinforcing bars cannot exceed 1/8 of the slab's thickness.

• Slabs have maximum bending moments per unit width.

equations:

 $Mx = \alpha x. w. lx^2$

 $My=\alpha y. \ w. \ lx^2$

Where, αx and αy are coefficient given in table 26.

w = total design load per unit area

Mx and My = moments on strips of unit width spanning lx and ly respectively.

lx and $ly = \bullet$ In accordance with figure 25 of IS code 456, slabs are divided into central strips and edge strips in both directions. The central strip is three quarters the slab's width, while the outer strip is one eighth.

FIG. 25 DIVISION OF SLAB INTO MIDDLE AND EDGE STRIPS

D-1.1 does not disperse centre strip maximum moments (IS 456).

• At least half of the tension reinforcement must reach 0.31 from the support in the top section of the slab over the continuous borders of a middle strip.

Edges that don't quite connect might have negative moments. Tension reinforcement equal to 50% of the mid span and 0.1 times l into the span is usually adequate.

The minimum requirements of Section 3 and the torsion criteria of D-1.8 through D-1.10 must be met by the reinforcing strips installed parallel to the edge.

When a slab is supported on two sides, it is essential that torsional reinforcement be provided to each corner. Bars running parallel to the slab's edges and outward for at least a quarter of the shorter span will be used for top and bottom reinforcement. Three-quarters of the slab's mid-span moment reinforcement will be distributed between these four layers.

• In a corner with a single continuous slab edge, half the D-1.8 torque reinforcement is required.

Torsion reinforcements are unnecessary in the corners of a slab with a continuous edge at the corner.

If torsion ly/lx is more than 2, slabs should span only in one direction.

• For slabs that are simply supported, the maximum moment per unit width is given by the following equation, assuming no special measures are taken to prevent twisting at corners or lifting.

 $Mx = \alpha x. w. lx^2$

 $My = \alpha y. w. lx^2$

Where, αx and αy are coefficient given in table 27.

w = total design load per unit area

Mx and My = moments on strips of unit width spanning lx and ly respectively.

lx and ly = lengths of the shorter span and longer span respectively.

· A minimum of fifty percent of the tension reinforcement that is given at the midpoint of

the span should extend to the supports. The remaining fifty percent need to stretch to

within 0.11x or 0.11y of the support, depending on the circumstance.

TYPICAL DEAILS OF ONE WAY SLAB AS PER SP34:1987 (#CL.9.3.1)

8.3 IMPORTANT POINTS FOR COLUMNS

• Columns and struts have effective lengths over three times the least lateral dimension. Pedestal if less than three.

• The lex/D and lex/b ratios of a compression member must be less than 12 for it to be considered short.

• The apparent gap between the compression members and the restraints is referred to as the unsupported length, which is denoted by the letter l.

The distance between end restraints must be no more than 60 times the smallest lateral dimension of the column. • The unsupported length, l, of a column must be less than or equal to 100b2/D.

There can be no quirkiness in the columns.

Minimum allowed dimension (emin) = unsupported length (lun) 500 + side length (dx) 30 or 20 mm.

The gross column cross section must be between 0.8 and 6% of the longitudinal reinforcement cross section. Use less reinforcing as 6 percent may hinder concrete laying and compacting. Lapping bars from lower columns with those in the column under consideration should employ no more than 4% steel. The minimal steel percentage should be computed on the concrete area that must sustain direct stress in columns with a larger cross sectional area than needed. Instead of basing the proportion on area, do this. The minimum diameter for a bar is 12mm; four longitudinal bars are needed for rectangular columns and six for circular ones.

8.4 IMPORTANT POINTS FOR FOOTINGS

• Reinforced and plain concrete footings on soils need 150mm edge thickness.

• The greatest bending moment at a section must be determined for a freestanding concrete base supporting a column, pedestal, or wall.

i.e., foundations for a single column or wall.

Footings for masonry walls should be placed midway between the centre line and the wall's edge.

iii) For footings beneath gusseted bases, midway between the column or pedestal and the base.

• Footings are vulnerable to shear failures in both directions (punching shear)

The effective depth of a footing, denoted by the symbol d, is what establishes the minimum distance that a critical section must be from the face of a column or wall in the case of one-way shear.

There is a critical region that is d/2 distant from the face of the column in two-way shear. where d refers to the depth of the foundation that may be used.

A bearing transfers concrete compressive stress from the base of a column or pedestal to the top of the footing or pedestal. The loaded zone bearing pressure must not exceed the bearing stress limit in direct compression times (A1/A2) up to 2.

Where A1 is the supporting area for footing bearing, which in sloped or stepped footing may be taken as the area of the lower base of the largest frustum of a pyramid or cone contained entirely within the footing, and having for its upper base, the area actually loaded, and side slopes of one vertical to two horizontal; and where A2 is the area of the upper base.

A2 = Loaded area at the column base

8.5 WORKING STRESS METHOD (WSM)

The lower base of the biggest frustum of a pyramid or cone wholly enclosed within a sloping or stepped footing determines its bearing area. This base should have a heavy top base and side slopes from one vertical to two horizontal.

8.6 LIMIT STATES METHOD (LSM)

The LSM, or limit states approach, enhances conventional design practises. In contrast to WLM and ULM, LSM takes into account both safety at ultimate loads and serviceability at working loads. LSM uses a multiple safety factor framework to provide safety at ultimate loads and serviceability at all service loads by considering all "Limit states" (limit state of collapse, limit state of serviceability). Probabilistic safety factor selection should include failure mechanisms, material attributes, and loads.

Sr. No.	LSM	WSM
1.	LSM considers safety at ultimate loads and serviceability at working loads.	Calculations in WSM are based on service load conditions alone.
2.	It gives an idea about the excess load which a structure can carry beyond the working load without collapse.	It does not give any idea about margin of safety available for loads to access the extent of overloading without collapse.
3.	It takes into account nonlinear stress strain behavior of concrete and steel.	This method follows linear stress strain behavior for both materials.
4.	Material strength is fully utilized in designing the member.	Material strength is not fully utilized in designing the member.
5.	It is a somewhat complicated method involving more calculations.	It is a simple method.
6.	This method is still evolving for the design of more complex structures.	Due to its simplicity, it is still used for design of some complex structures water tank, bunker, silos etc.
7.	It results in smaller section size in comparison to that obtained from WSM, thus gives economical section.	It results in bigger section size in comparison to that obtained from LSM, thus gives uneconomical section.
8.	It is a more rational method which not only takes into account safety and economy but also fitness of the structure by controlling serviceability limits	It is an old conservative method which mainly concentrates on safety aspect.

8.7 LIMIT STATE METHOD Vs WORKING STRESS METHOD

IX. Design of Two-way slab for Residential building

Design steps: -

a) Data:

live load =3 KN/m², floor finishes=1.2 KN/m², fck=20 N/mm², fy=500N/mm² Miscellaneous= 2 KN/m²

Lx=3.91m, Ly=5.59m

b) Depth of slab:

As per IS 456:2000, Clause 24.1,

Assuming thickness of slab 125mm

Assume 20mm cover and 8mm diameter bars

Effective depth, d = 125 - 20 - 8/2 = 101mm

c) Effective span

As per IS 456: 2000 clause 22.2

Eff. Span along short and long spans is computed as:

- a) Lex1= centre to centre of support = 3.91m
- b) Lex₂ = clear span+ effective depth = 3.91+0.101 = 4.011m
- c) Lex1= centre to centre of support = 5.59m
- d) Lex2 = clear span+ effective depth = 5.59+0.101 = 5.691m
- Eff. span along short span, Lex= 4.011m
- Eff. span along long span, Ley= 5.691m

d) Loads Calculations:

Self wt of the slab = D^* density= 0.125* 2	$25 = 3.125 \text{ KN/m}^2$
Floor Finishes	$= 1.2 \text{ KN/m}^2$
Live load	$=2 \text{ KN}/\text{m}^2$
Total Load (W)	$= 8.33 \text{ KN}/\text{m}^2$
Ultimate Load (Wu)	=12.49 KN/m ²
Type of slab	
Eff. span along short span, $Lex = 4.011m$	
Eff. span along long span, Ley= 5.691m	
Ly/Lx=1.4<2	
Hence slab has to design two way slab,	
Hence, design as two-way slab.	
Ultimate design moment coefficients	
= 1.4 one long edge is discontinuous.	

e) Moment and shear forces

Referring to IS 456-2000 code B.M co-efficient are as follows, From table 26, page no.91

	Shorter span, αx	longer span, αy
-ve moment at continuous edge	0.063	0.037
+ve moment at mid span	0.047	0.028

Calculation of maximum bending moment: -ve moment at continuous edge:

```
For shorter span =\alphaxwulx<sup>2</sup>
= 0.063x12.49x(4.011)2
= 12.65 kN-m
For longer span = \alphaywulx<sup>2</sup>
= 0.037x12.49x(4.011)2
= 7.4 kN-m
+ve moment at mid span:
For shorter span = \alphaxwulx<sup>2</sup>
= 0.047x12.49x(4.011)2
= 9.44 kN-m
For longer span = \alphaywulx<sup>2</sup>
```

= 5.62kN-m

= 0.028 x 12.49 x (4.011) 2

f) Check for depth Equating the Mu lim to maximum B.M

Mulim =0.133fckbd2

12.65 x10^6=0.133x20x1000 d²

 $d_{req} = 68.98 \text{mm} < 101 \text{ mm} \{ d_{pr} \text{ is Hence ok} \}$

Hence the effective depth selected is sufficient to resist the design ultimate moment.Say the slab thickness is 125mm

g) Area of steel required

Reinforcements along Short and long span directions

As per IS: 456 Annex G Clause. G.1

 $X_u/d = 0.47$ is less than limiting value (0.46) for fe-500

The area of reinforcement is calculated using the relation:

Mu =0.87*
$$A_{st}$$
*d*Fy* $[1 - \frac{Ast*Fy}{B*d*Fck}]$

SPAN	DIRECTION	MOMENTS	Area (mm2)
	+ve moment(kNm)	9.44 kN-m	201
Short span	-ve moment(kNm)	12.65 kN-m	270
	+ve moment(kNm)	5.62kN-m	180
Long span	-ve moment(kNm)	7.4 kN-m	180

f) Check for area of steel As per IS 456 clause 26.5.2.1 Min.Ast = $\frac{0.12}{100} bD$ =0.012X1000X125=150mm² g) Check for spacing As per IS 456:2000 Clause. 26.3.3(b) Short span: Assuming 8mm ϕ bar, Spacing = $\frac{\frac{\pi}{4}(8)2}{270} * 1000 = 250$ mm Spacing = $\frac{\frac{\pi}{4}(8)2}{270} * 1000 = 186$ mm long span: Assuming 8mm ϕ bar, Spacing = $\frac{\frac{\pi}{4}(8)2}{180} * 1000 = 280$ mm Spacing = $\frac{\frac{\pi}{4}(8)2}{150} * 1000 = 335$ mm Maximum spacing = 3d or 300mm, whichever is less = $3 \times 101 = 303$ mm (or) 300mm (take lesser value) = 300 mm

Hence Provide 8mm ϕ bar at 125mm c/c. At (Along X-direction).

Provide 8mm ϕ bar at 150mm c/c. At (Along Y-direction

h) Check for shear stress

Vu = 0.5*Wu*Lx

= 0.5*(12.49)*(4.011)

Vu = 25KN

Considering slab width and shorter span.

 $\begin{aligned} \tau_{\rm v} &= (\frac{Vu}{bd}) = \frac{(25 \times 1000)}{1000 \times 101} = 0.24 \text{N/mm2} \\ \tau_{\rm v} &= 0.24 \text{N/mm}^2 \\ p_{\rm t} &= \frac{100 \times 270}{bd} = \frac{100 \times 270}{1000 \times 101} = 0.25 \end{aligned}$

Permissible shear stress, = 0.33N/mm² (IS 456:2000, Table19 Pg:73)

 τ_c =0.36, k=1.3(IS 456:2000 Clause 40.2)

Design shear strength of concrete = $k\tau_{C}$

= $1.3 \times 0.36 = 0.429 \text{ N/mm}^2 \tau_{\text{cmax}} = 0.36, \text{ k} = 1.3$

k tc=0.36*1.3=0.46 N/mm²> tv

 $\tau_v\!\!<\!\tau_c\,$ hence the shear stress are within the safe.

i) Check for deflection control

Ast prov = 180 mm² Ast req = 150 mm² Fs = 0.58 x fy (Ast req/ Ast prov) =244 $p_t = \frac{100ast}{bd} = 0.18$ Modification factor = 2 (IS 456:2000, fig. 4) Permissible *l/d* ratio = 32 × 2= 64 Actual *l/d* = (4011/101) = 40< 64

Therefore, deflection is safe with provided depth.

ii) Reinforcement details

	THK					
MKD.		BOTTOM BAR		TOP BAR		REMARKS
	(11111)	SHORT BAR(A)	LONG BAR(B)	SHORT BAR(C)	LONG BAR(D)	
S1	125	8 0 @125 c∕c	8 0 @150 c∕c	8 0 @125 c∕c	8 0 @150 c∕c	
						AND HILL

Fig. 9.1 Reinforcement details in Two way slab

Design:

Data:

Fck=25N/mm2 Fy=500N/mm2 Length =4.822m, b=300mm, D=450mm Max moment (Mu) = 34.665KN-m (from Etabs software) Shear force (Vu) =43.043KN Assuming 12mm dia bars with 30mm clear cover d=450-30-12/2 = 414mm **Compare Mu and Mu,lim** $M_{u,lim} = 0.133Fckbd^2$ For Fe=500Mpa $= 0.133*25*300*414^2$ = 170kN-m >MuThe section is under reinforced hence it is singly reinforced beam is design,. Determine the value of Xu,max for given type of steel(#cl.38.1) and calculate Mulim of the section (Annex – G,#G1.1©) Area of steel required(Annex - #G1.1(b)

 $Mu = 0.87*A_{st}*d*Fy*[1 - \frac{Ast*Fy}{B*d*Fck}]$

Ast,req=263mm²

Xu, max/d=0.46 for fe 500MPa (cl 38.1 IS-456, Pg: 70)

Determine the depth of netutral axis from the

following equation: $\underline{xu} = 0.87 \text{ fY Ast}$ $d \quad 0.36 \text{ fck} \sim \underline{b.d}$ =0.125Xu/d < Xu,max/d hence the section is under reinforced Ast,min = (0.85 b d/ fy) (IS 456-200 Pg:47) Ast,min = 161.874 mm² Ast,max= 0.04bd = 0.04 x 300 x 450 = 5400 mm² No of bars =Asc/area of single bar = $\frac{263}{\pi(12)2/4}$ =2.32=3Provide 3 bars of 12mm diameter(A_{sc(provided)}=339mm²) Check for shear: Vu=43.0430KN $\tau_v = V_u/bd$ $=(43.0430*10^3)/(300*414)$ $=0.35N/mm^2$ $\tau_c=100*Ast/bd$ =(100*339)/(300*414)=0.27

from table-19 IS-456-2000

from table-19 IS-456-2000

τc=0.38N/mm2

 $\tau \underline{v} \ge \tau c$ hence, Shear reinforcement required.

 $Vus = [Vu - (\tau cbd)]$

=[43.043*1000-(0.38*300*414)

Vus=140.62KN

Using 8mm diameter bar 2LVS

 $Sv = \frac{0.87 * fyAsvd}{Vus}$

Sv=173.23=180mm

Sv>0.75d=(0.75*414)=310mm

Sv=200mm

Provide 8mm diameter 2LVS @ 200mm c/c.

Check for deflection:

(L/d) actual= (4.822/414) =13.73

(L/d) max=[(L/d) basic*Kt*Kc*Kf]

Pt=0.97, pc=0.31

Refer fig. 8.1, 8.2, 8.3

(L/d)max=[20*0.83*1.10*1.0]

=18.26

(L/d) act<(L/d) max, thereby satisfying deflection control.

Fig. 9.2 Reinforcement details in Plinth beam

9.3 Design of short columns under compression and biaxial bending (C6).

Fig 9.3.1:- Bending moment, shear force and axial force.

Design of Column subjected to Axial load and Biaxial Bending (IS 456, 2000, SP:16, 1980)

\sim	_		
	<u></u>	1 man	
-	-		

Depth(D, dim. Z axis) = 450 mm Breadth (b, dim. Y axis) = 300 mm Clear cover Main bar dia Effective cover(d) Effective depth		450 300 40 16 48 402	mm mm mm mm mm
Materials of Construction			
Grade of concrete fck Grade of steel fy		25 500	N/mm2 N/mm2
Design Forces			
Axial load:(P) = Moment about Z axis (Mz) = Moment about Y axis (My) =		1456.7501 9.4361 1.1705	KN KN-m KN-m
d'/D Mz/fckbD2 P/fckbd Referring chart 45 of SP: 16 p/fck Assume a higher value of p/fck		0.10666667 0.00621307 0.43162966 0.02 0.06 1.5	%
As=(p*b*D)/100 Area of 16 mm bar No of bars required Area provided Use 12 No.s	16 mm – 2211.2	2025 201.024 10.0734241 2412.288 264 mm2	mm2 Required mm2 Provided 12 No.s mm2
Moment Capacities			
d'/D=0.15, P/fckbd=0.14,p/fck=0.06	Mz1/fckbD2 Mz1	0.1 151.875	Referring chart 45 of SP: 16 KN-m
d'/D=0.2, P/fckbd=0.14,p/fck=0.06	My1/fckbD2 My1	<mark>0.09</mark> 136.6875	Referring chart 46 of SP: 16 KN-m
Calculate αn			
Pz=0.45fckAc+0.75fyAs P/Pz αn(For values of P/Pu=0.2 to 0.8, values of αr from 1 to 2.For values less than 0.2,αn is 1 for greater than 0.8 αn is 2	n vary linearly r values	1594.134 0.9138191 1	KN Referring to IS:456, Clause 39.6
Criteria for Biaxial bending			
(Mz/Mz1)^an+(My/My1)^an <=1		0.07069403	<=1 SAFE OK

"Analysis and Design of G+3 Building Using ETABS"

Fig 9.3.1:- Reinforcement Details Of Column
9.4 Design of RCC Isolated Footing: (F7)

GIVEN DATA		
Service Load	976.72	kN
Moment Mux (Unfactored)	19.42	kNm
Size of the column Bc	230	mm
Lc	450	mm
SBC of soil	180	kN/m ²
fck	25	MPa
fy	500	MPa
1.Size of the footing		
Load on column	976	.72 kN
wt. of footing and backfill at 10%	97.6	72 kN
Total load	1074.3	92 kN
Area of footing, Required	5.9688444	44 m ²
Width of the footing: Bf (assume)		1.6 L=B
Length of the Footing: Lf (assume)		1.6 m
Area of the footing provided (Af)	2	.56 m²
Section modulus, Zxx	0.6826666	67
2.Calculation of depth of footing		
P, max	409.97851	.56 kN/m2
P, min	353.08398	44 kN/m2
Comment: T	Vary the dimension of Footing	
2 <mark>_</mark> F	o,min is greater than zero. Safe	
Cantilver Projection from face of the column(along length)	0.5	75 m
Cantilver Projection from face of the column(along width)	0.6	85 m
Maximum Projection	0.6	85 m
Net Soil Reaction at the face of column(P')	389.53204	35 kN/m2
Average Soil Reaction (Pavg)	399.75527	95 kN/m2
3.Depth of the Footing		
Cantilever Projection of Footing(Max)	0.685	m
Moment at the face of column	140.6813783	kN-m
Effective depth required	205.6944067	mm

	1	
To be safe against One Way and Two Way Shear		1
Depth Increase factor	2.1	mm
Increased effective depth	431.9582541	mm
Effective cover(d')	50	mm
Overall depth required	481.9582541	mm
Overall depth provided	500	mm
Effective Depth Provided	450	mm
RFT in bothways		_
a	4.4444E-05]
b	-1]
с	718.6788163]
Ast1	21756.77051]mm²
Ast2	743.229486]mm ²
Ast,Required	743.229486]mm²
Provide#	12	mm
Spacing , required	152.1701408]mm
Spacing , provided	125	mm
Thus Ast	904.7786842	mm ²
pt, provided	0.20106193	%
4.Check for one way shear		
Shear at 'd' from face of column Vu	140.913736	N
τν	0.313141636	N/mm
Calculation of to]
Ast at supports	904.7786842	mm ²
pt	0.20106193	%
pt, taken	0.20106193	%
β	14.43713199	
^β , taken	14.43713199	
τε	0.331534149	
fck	25	N/mm ²
fck,taken	25	N/mm ³
Comment:	τ ν < τ c , Shear Reinforcement not Required	
5) Check for two way shear		
Punching area	0.612	mm ²
Punching Perimeter	3.16	kN
Punching Shear	738.3263894	N/mm
Resting Shear	1137.6	kN
Comment:	Hence safe	

"Analysis and Design of G+3 Building Using ETABS"

REINFORCEMENT DETAILS					
MZD		THK. THK.	BOTTO	M BAR	
MKD.	SIZE (LXW)	(d)	(D)	LONG BAR A	SHORT BAR B
F1	2500X2000	200	575	12 0 @150C/C	12 0 @175C/C

Fig. 9.4.1 Reinforcement details of Footing

X. RESULT AND CONCLUSION:

G+3-storey apartment building analysis and design. ETABS V13.2, a premium section analysis and design programme, is used. RCC frame, shear wall, and retaining walls. The soil investigation report gives an isolated footing. ETABS developed RCC beams and columns. Analysis and design were as conventional as possible. Recognized were the structural engineer's design problems.

Manual design and software analysis data for structures

Following conclusions are drawn:

ETABS was used to analyse and manually verify IS456.

- 2. Manual and computerised calculations provide similar results.
- 3. Results match when expanded to a 4-story structure.
- 4. ETABS is ideal for study and design of a four-story structure with identical levels.
- 5. ETABS reduces analysis and design time.

IS-CODE STANDARDS

Sl. No.	Code	Description
1.	IS-875 (Part 1) - 1987	Code of Practice for Design Loads (other than earthquake) for Buildings and structures – Unit weights of buildings and stored material.
2.	IS-875 (Part 2) - 1987	Code of Practice for Design Load (other than earthquake) for buildings and structures-imposed loads.
5.	IS-875 (Part 5) - 1987	Code of practice for design loads (other than earthquake) for buildings and structures – Special loadsand load combinations.
6.	IS:456 - 2000	Code of practice for plain and Reinforced Concrete.
7.	IS: 1893 - 2016	Criteria for Earthquake resistant design of structures.
8.	IS: 13920-2016	Ductile detailing of reinforced concrete structures subjected to seismic forced – Code of practice.
9.	IS: 1904- 1986	Indian Standard Codes of practice for design & construction foundations in Soil: General Requirements
12.	IS 4326	Code of practice for earthquake resistant design and Construction of buildings.
14.	SP-16	Structural use of concrete. Design charts for singly reinforced beams, doubly reinforced beams and columns.
15.	SP 34	Handbook on Concrete Reinforcement & detailing
17.	Handbook-by Reynolds & Steedman	Reinforced Concrete Designer's Handbook.

REFERENCES

- [1]. Varalakshmi V, G shivakumar and R S Sarma (2014) "Designed and d G+5 residential building by ETABS", International Conference on Advance in Engineering and Technology.
- [2]. Abhay Guleria (2014) "Structural Analysis of a Multi-Storey Building Using ETABS for different Plan Configurations", International Journal of Engineering Research & Technology (IJERT) Vol. 3 Issue 5, ISSN: 2278-0181
- [3]. Chandrashekar and Rajashekar (2015), "Analysis and Design of Multi Storied Building by Using ETABS Software", International journals of scientific and research vol.4: issue.7: ISSN no. 2277-8179.
- [4]. Balaji and Selvarasan (2016), "Design and Analysis of multi-storeyed building under static and dynamic loading conditions using ETABS", International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 4, Issue 4, PP. 1-5
- [5]. Geethu S N, Depthi M, Abdul Nasir N A and Izzudeen K M(2016) "Comparative study on design and analysis of multi storied building by STAAD.Pro and ETABS software".
- [6]. Mohith Y S, (2017) "Analysis and design of commercial building using Etabs" International Research Journal of Engineering and Technology (IRJET) e-ISSN:2395-0056Volume:04Issue:06.
- [7]. D. Kornack and P. Rakic, "Cell Proliferation without Neurogenesis in Adult Primate Neocortex," Science, vol. 294, Dec. 2001, pp. 2127-2130,doi:10.1126/science.1065467.
- [8]. M. Young, the Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.