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Abstract: In recent years, extensive building equipment automation has contributed to the accumulation of a 

large amount of air conditioning system operation data, which can be used to research air conditioning system 

Fault Detection and Diagnosis (FDD). A data-driven approach based on intrinsic correlation and regularity of 

data is more advantageous for FDD modeling of air conditioning systems. The relevant literature indicates that 

data-driven FDD models require input training samples. A literature review is conducted in separate sections 

based on whether the training samples have labels, such as fault labels, and whether the data-driven methods 

are supervised or unsupervised. Among the supervised data-driven methods are classification and regression. 

Data-driven methods that do not require supervision include cluster analysis, association rule mining, and 

Principal Component Analysis (PCA). An analysis and summary of the advantages and disadvantages of 

supervised and unsupervised methods has been conducted from the perspectives of diagnostic accuracy, scope, 

model applicability, and calculation. An overview of the related literature on data-driven fault detection in 

HVAC is presented in this paper, as well as a brief discussion of the fault types found in HVAC systems and the 

application of data-driven fault detection in AHU, Chiller, and HVAC systems. In light of the difficulties in 

developing data-driven methods, this paper provides some suggestions and further research directions, such as 

developing hybrid FDD approaches. 

Keywords: FDD；Data-driven；HVAC；Supervised method；Unsupervised method  

---------------------------------------------------------------------------------------------------------------------------------------  

Date of Submission: 25-02-2023                                      Date of acceptance: 06-03-2023 

---------------------------------------------------------------------------------------------------------------------------------------  

 

I. Introduction 

As a percentage of total global energy consumption
1
, the building sector accounts for 35% of the total, 

while HVAC systems account for 50-60% of the totalbuilding energy consumption
2
. There are a number of 

components in HVAC systems that operate below optimal levels 
3
. A study conducted by Qin and Wang found 

that 261 out of 1251 Variable Air Volume (VAV) terminals in a commercial building in Hong Kong were 

operating abnormally 
4
. In commercial buildings in the United States, Roth et al. 

5
 found that 13 critical failures 

account for approximately 4-18% of the energy consumption of lighting systems, HVAC systems, and 

refrigeration systems. In the event of an HVAC system failure, energy can be wasted, equipment can be 

shortened, indoor environment can be uncomfortable, and many other issues may arise. The efficiency of HVAC 

systems may be adversely affected by poor equipment maintenance, improper component performance, 

installation failures, and control errors
6-9

. Therefore, it is imperative to detect HVAC system failures as soon as 

possible in order to create a comfortable indoor environment and prevent energy losses. 

With the advancement of technology, artificial intelligence fault diagnosis technologies have become 

increasingly prevalent. There have been many FDD methods applied to building energy systems over the past 

few decades. The HVAC system includes interconnected air supply, fresh air, chilled water, and cooling water 

systems, making the air conditioning control system more complex. The FDD method is easily incorporated into 

HVAC control systems. Detecting and diagnosing faults accurately can improve the self-healing capabilities and 

fault tolerance of the air conditioning control system while reducing its operating and maintenance costs. The 

literature review by Katipamula et al. in 2005 and 2018 categorizes FDD methods into three categories: 

quantitative model-based, qualitative model-based, and process history-based methods 
10-12

. According to Yu et 

al.
13

, FDD methods can be divided into analytical-based methods, knowledge-based methods, and data-driven 

methods. 

With the maturation of building automation systems and all kinds of system data, a data-driven (DD) 

analysis method based on the intrinsic correlation and regularity of data has become one of the most promising 
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tools for analyzing a wide range of building operation data. Using large amounts of historical data on various 

operation conditions (including normal and fault conditions), a data-driven method was used to investigate the 

correlation between variables and parameters
14

.DD methods cannot rely on expert knowledge or physical 

models, but only require data regarding the operation of the system 
15, 16

. In comparison with the 

analytical-based method of diagnosis, the DD method has a greater advantage in the model training step since 

fewer samples are required to find the fault. The DD method differs from the knowledge-based method in that it 

is no longer a "customized" model of the system, and its applicability is more broad than the knowledge-based 

method. There are a number of DD techniques, including artificial neural network 
17

, Bayesian network 
18

, 

decision tree 
19

, principal component analysis 
20

, support vector machine 
21, 22

, cluster analysis 
23

, and 

Association Rule Mining (ARM) 
24

. 

A HVAC system consists of a number of components, including an air handling unit, cold and heat 

source equipment, a water system, an air system, and an air conditioning terminal, as well as variables such as 

ambient air temperature, humidity, volume of air, wind speed, ambient temperature, solar radiation, and 

meteorological information. The HVAC system is a complex system composed of many nested subsystems, and 

each subsystem may fail independently or simultaneously, making fault diagnosis and detection extremely 

challenging. 

Poor HVAC system operation and delayed or incorrect fault diagnosis will result in air conditioning 

operations failing and will result in an increase in energy consumption of about 5-30%
10

. It is more difficult to 

diagnose non-catastrophic failures (soft failures) in HVAC systems when sufficient sensors, controllers, and 

mechanical components fail. The most common components of HVAC systems that fail are air handling units, 

cold and heat source equipment, air supply terminals, fans, pumps, filters, cooling towers, valves, and sensors. 

Based on a literature review and combing, data-driven methods are divided into supervised and 

unsupervised ones based on whether the training samples have labels, as well as reviewing relevant literature on 

FDD. This research summarizes and analyzes the progress in comprehensive fault diagnosis and detection of 

AHU, chillers, and air conditioners. 

 

II. Supervised data-driven method 

The supervised data-driven method represents the mapping relationship between multiple variables by 

training the model with a certain number of data samples, which is usually used for prediction and classification 

tasks 
24

. The method consists of two parts: supervised classification and regression. 

 

2.1 Supervision classification method 

Based on the data collected under different fault conditions, the supervised classification method is 

capable of learning the mapping relationship between fault and data in order to achieve fault diagnosis. There 

are a number of classification-based supervision methods, including linear discriminant analysis, support vector 

machines, artificial neural networks, and Bayesian networks. 

Using Linear Discriminant Analysis (LDA), also known as Fisher linear discriminant, 

high-dimensional data is projected into low-dimensional space while preserving multi-class difference 

information. After projection, it ensures that the sample has the maximum inter-class and minimum intra-class 

distances in the new subspace, resulting in maximum class identification
25

. However, in a study conducted by 

Ebrahimifakhar et al. 
17

 on cooling system fault detection, it was found that the overall accuracy of the LDA 

method alone was lower than that of the SVM and other methods of classification. 

The Support Vector Machine (SVM) is a generalized linear classifier that can avoid model overfitting 

and is capable of handling nonlinear and high-dimensional pattern recognition challenges. The SVM model is 

used in the FDD training process to find an optimal hyperplane in a higher-dimensional3 feature space. 

Monitoring data is compared with the hyperplane in order to determine whether they belong to the fault class or 

not. According to Fig.1
26

, fault A is separated from other fault data. An SVM-based FDD method has been 

proposed by Han et al. 
27

 in which the ML-SVM method includes over two types of labels and is capable of 

diagnosing multiple faults in a system simultaneously. In two studies of chiller failures, four SVM classifiers 

were developed for the detection of no-failure conditions and three different types of failures
28, 29

.Liang and Du 
30

 proposed the use of a four-layer SVM classifier in order to detect and diagnose faults. The first layer of the 

classifier determines whether or not the system is failing, and the remaining three layers determine the type of 

fault. According to Sun et al. 
31

, a hybrid Refrigerant Charge Amount (RCA) fault diagnosis model is proposed 

based on Wavelet De-noising (WD) and support vector machine (SVM). 
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Fig. 1 Description of fault detection and diagnosis method based on support vector  

 

Artificial neural network (ANN) comprises an input layer, one or more hidden layers, and an output 

layer, and weight matrices connect the layers. In ANN model training, minimize the difference between the 

target value and the model output value by adjusting the weight matrix. In the fault diagnosis and detection 

process, the trained ANN model is used to calculate the residual and determine the type and severity of the fault 

by comparing the residual with the threshold 
32-34

. Fig.2 indicates a four-layer artificial neural network structure 

for fault diagnosis 
26

. Neural network methods for detecting or diagnosing faults through residuals include those 

based on the comparison of residuals with thresholds and those based on the comparison of abnormal residuals 

with thresholds after classification and ranking 
35, 36

. Kocyigit proposed a fault diagnosis and detection model 

based on a fuzzy inference system (FIS) and  ANN to diagnose the faults of a vapor compression refrigeration 

experimental setup 
37

. Sun et al. 
38

 proposed a fault diagnosis method combining independent component 

analysis (ICA) and a back-propagation neural network (BPNN). Before BPNN training, ICA is used to reduce 

the dimension of the original data to realize the fault detection and diagnosis of the VRF system. Guo et al.
39

 

established a VRF system fault diagnosis model using the deep belief network (DBN) method. They found that 

increasing the number of hidden layers can improve the fault diagnosis accuracy of the model and proposed a 

parameter selection strategy to optimize the model. Taheri et al. 
40

 applied deep recurrent neural networks 

(DRNNs) to fault diagnosis and compared and optimized seven DRNN models with different depths to make the 

model more accurate. Shahnazari et al. 
41

 proposed a recurrent neural network (RNN) fault diagnosis model for 

HVAC systems, which can fault diagnosis without historical data. 

 

 
Fig. 2 Schematic diagram of a four-layer ANN structure for fault diagnosis 
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Bayesian networks (BNs) are a method for predicting the response value of a variable based on the 

conditional probability theorem. BNs can discretize continuous variables to obtain nonlinear relationships 

between variables, and Dynamic Bayesian networks (DBNs) can consider the time factor in the data 
42

. In the 

FDD process, the response value is the desired fault tag. Bayesian networks can fault detection and diagnosis 

even without complete system information 
36

. Hu et al. 
24

 proposed a model based on PCA and Gauss naïve 

Bayes (GNB) to realize the detection and diagnosis of four faults of the VRF system. Zhao et al. 
43

 proposed a 

diagnostic Bayesian network (DBN)-based method for detecting and diagnosing 18 typical faults in 

heating/cooling coils and sensors and faults in secondary supply chilled water/heating water systems in AHU. 

Wang et al. 
44, 45

 proposed two hybrid methods based on the Bayesian network, one is to integrate Bayesian 

networks with fused reference model methods, and the other is to combine BNs with PCA. The hybrid method 

overcomes the limitations of a single method, thus improving the performance of FDD. 

 

2.2 Supervised regression method 

Using sample data, a supervised regression method trains a model according to the regression principle 

and predicts the data using the model. The gray box model and the black box model are two types of regression 

models. The gray box model was developed by combining partial theoretical structures derived from prior 

knowledge with data. Data can be processed using the black box model without relying on physical/scientific 

laws or prior knowledge 
26

. In order to calculate the benchmark test value and the confidence interval, the FDD 

benchmark model based on the regression method is used. It is possible to detect a fault by comparing the actual 

measurement value with the confidence interval, as shown in Fig.3
46

. There are three categories of supervised 

regression methods: artificial neural network-based methods, support vector-based methods, and other 

regression methods. 

 
Fig. 3 Illustration of the regression-based FDD method 

 

The ANN regression method comprises an input layer, one or more hidden layers, an output layer, and 

a weight matrix connecting the layers. However, the difference between the classification method is whether the 

output variable is continuous. Mavromatis et al. 
47

 proposed a model based on ANN regression to diagnose and 

detect the faults in supermarket systems. Du et al. 
48

 proposed a double neural network combination method 

combined with the principal component analysis method, the basic neural network of the control relationship 

between variables and the auxiliary neural network of the correlation analysis between variables to detect the 

sensor fault in the AHU supply air temperature control loop. Combined with data monitoring and clustering 

analysis of supply air temperature and return water temperature, a combination of two back propagation neural 

networks was used to detect the failure of the AHU
49

. 

The support vector regression (SVR) method calculates a relevant feature space and output variables 

through a nonlinear mapping function, maps the input data to a high-dimensional feature space, and finds a 

hyperplane in which the edge is maximized, and the error is minimized, which is used to solve complex 

regression problems 
50

. Zhao et al. 
51

 proposed a combined model based on Exponentially Weighted Moving 

Average (EWMA)control charts and SVR to detect and diagnose refrigeration system faults. Tran et al. 
52

 

proposed a combined model of the nonlinear least squares support vector regression (LSSVR) and the 

exponentially weighted moving average (EWMA) control charts to diagnose the fault of centrifugal chillers of 

building air conditioning systems. 
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III. Unsupervised data-driven method 

An unsupervised method is a forward-looking approach to discovering useful knowledge and structure 

from unlabeled data. Unsupervised methods aim to discover a data's intrinsic structure, correlations, and 

associations 
24, 53

. Clustering analysis 
54, 55

, Association Rule Mining (ARM) 
56

, Principal Component Analysis 

(PCA) 
57, 58

, and self-organizing neural networks 
24

 are examples of unsupervised methods. 

Based on the distance between variables, cluster analysis divides the data into multiple clusters. As a 

result of selecting the appropriate distance index, the distance between the data and the cluster has similar 

characteristics. The purpose of clustering is to group together objects that are similar and dissimilar to those 

belonging to other clusters. A Multivariate Statistical Process Analysis (MSPA) method referred to as weather 

Pattern Matching (PM) and Principal Component Analysis (PCA) was proposed by Chen and Wen et al. 
59

. The 

Symbolic Aggregate Approximation (SAX) method is used to detect system faults by identifying similar 

weather patterns in historical databases and generating a dynamic baseline dataset for the PCA model to use. In 

an attempt to improve the building energy management system (BEMS), Capozzoli et al. 
32

 proposed a 

Density-Based Spatial Clustering of Applications with Noise Clustering (DBSCAN) method that detects 

abnormal energy consumption in building energy systems. According to Li and Hu et al. 
60

, an improved method 

for combining the DBSACN with PCA was proposed, which uses DBSCAN to classify and identify the low and 

high chilled-water flow operation conditions of the chiller, and then uses the PCA model to diagnose and detect 

the sensor fault in the chiller. According to Du et al. 
49

, fault conditions in AHUs were classified adaptively 

using subtractive clustering analysis, which divided different faults into different space zones in the data space. 

In addition to identifying the known faults in the library, this method can also identify new unknown faults and 

adaptably supplement them with the fault library. Clustering and correlation analysis were used by Xue et al. 
61

 

to detect faults in district heating systems. First, they used the clustering method to determine the operating 

patterns of the heating system during different seasons, and then they used correlation analysis for each pattern 

to determine if there were any faults. 

Association rule mining [ARM] can extract the correlation between variables and express knowledge 

discovered in a rule format 
24

. Fan et al. 
62

 proposed a general framework for knowledge mining in Building 

Automation System (BAS) data. First, the analysis of variance (ANOVA) method was used to identify the most 

significant variables affecting the total power consumption and determine the typical working patterns by cluster 

analysis. Then the quantitative association rule mining (QARM) method is used to detect and diagnose faults. 

Like the above pattern, Li et al. 
63

 used clustering analysis to classify data and used association data mining to 

detect and diagnose faults in VRF air conditioning systems. 

PCA is a statistical method based on the least square method, widely used in the FDD process of 

HVAC systems. The FDD method of single PCA is suitable for the steady-state process of the dynamic system. 

However, the actual monitoring data is the complex data of nonlinear control, so the adaptability and low 

accuracy of the PCA model need to be considered in practical application 
64, 65

. To solve the problems mentioned 

above, we proposed a fault diagnosis method combining PCA with other methods. Li et al. 
66

 proposed a 

combined PCA and support vector data description (SVDD) model for chiller fault detection. In addition, 

considering the adaptive problem of the PCA model in fault diagnosis, Zhang et al. 
64

 proposed a model based 

on subtractive clustering, k-means clustering, and the PCA method for sensor fault detection and diagnosis. 

 

IV. Discussion 

Based on the above literature review and analysis, the advantages and disadvantages of supervised and 

unsupervised data-driven methods are summarized, as shown in Table 1 below. 

 

Table 1 Comparison of advantages and disadvantages of supervised and unsupervised data-driven 

methods 
 Supervised data-driven methods Unsuperviseddata-driven methods 

Advantage 1. Strong modeling ability for complex system 1. It can be used when the sample data is less 

 2. The input and output variables in the training 
samples have a clear corresponding relationship 

2. Mining the internal relationships in the data may 
lead to the discovery of unknown rules 

 2. Bycombiningdomain expertise to improve the 

accuracy of the model output 

3. Does not rely on domain expertise and 

high-quality labeled training data, making the 
economic cost low 

Shortcoming 1. The training model needs label data, and the 

amount of data required is enormous 

1.The time required for data preprocessing depends 

on the quality of the original running data 
 2. The model's input and output data are labeled, 

and the ability to mine new knowledge and rules 

is limited. 

2. Using unlabeled data may cause the model to 

output incorrect results 

 3.The reliability and robustness of the model are 

affected by the quality of training data 

3. The amount of knowledge found is large, and it is 

not easy to screen helpful knowledge 
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V. Application of Data-Driven FDD Technology in the HVAC System 

Between 2004 and 2018, 197 FDD-related publications were published, which mainly focused on 

VAV-AHU, water chillers and cooling towers, air conditioning and heat pumps, and general building 

applications, as shown in Fig.4
12

. This paper reviews and analyzes relevant research on the FDD of HVAC 

systems after 2018. In particular, they concentrate on the diagnosis and detection of AHUs, chillers, air 

conditioning systems, and HVAC. The following is a literature review and analysis of the aspects of AHUs, 

chillers, and overall air conditioning systems. 

 

 
Fig. 4 Classification of FDD documents based on the building system 

 

5.1AHU 

In large commercial buildings, Air Treatment Units (AHUs) are used primarily to heat and cool the 

air. As shown in Table 2, AHU faults can be divided into AHU equipment faults, AHU actuator faults, AHU 

sensor, and feedback controller faults 
13, 67

. 

There are two types of faults associated with AHU equipment: system disturbances and equipment 

structure faults. When modeling the AHU system, the fault diagnosis model may be too simple or critical 

information may be ignored, which leads to uncertainty in the model, which results in the system disturbance 

fault. The term "equipment structure failure" refers to the failure of a particular structure of an equipment, which 

results in the inability to perform the entire process, such as an air leakage in a duct. System failures may occur 

due to insufficient heating or cooling or increased infiltration. As another example, a dirty coil will change the 

heat coefficient, resulting in a reduction in thermal conditioning
13, 67

. In their study 
43

, Zhao et al. used diagnostic 

Bayesian networks to diagnose coil fouling, heating coil stuckness, cooling coil valve leakage, and other AHU 

faults. 

In addition, the actuator failure may affect the feedback signal received by the controller, thus affecting 

the overall output and reducing the control performance of the system. For example, OA dampers are stuck, 

reducing the efficiency of the temperature controller so that temperature regulation requires longer rise and fall 

time, and mechanical cooling rather than free cooling of outdoor air increases energy consumption. Dey et al. 
68

 

proposed a model combining the Air handling unit Performance Assessment Rules (APAR) and the Bayesian 

Belief Network (BBN) method to diagnose and detect faults such as AHU damper leaks or stuck and supply 

fan/return fan faults. Provide diagnosis when multiple different faults occur. Yan 
69

 and Piscitelli 
70

 used 

data-driven FDD models to diagnose and detect valve and damper faults. 

Faults of the AHU sensor and feedback controller will degrade the overall performance of the AHU. 

Sensors are used to measure the state variables of each part in the AHU as input signals, send the input signals 

(input values) to the controller and compare them with the set values. It applies sequencing logic and then 

produces output signals transmitted to the actuators. The AHU schematic is shown in Fig.5. The performance of 

the controller depends on performing the sensor. If the sensor has drifted, offset, and other faults, it will affect 

the controller's performance. Du et al. 
48, 49

 used a double neural network combination method to detect and 

diagnose supply air temperature sensor faults, water valve stuck faults, unreasonable control set points, and 

other faults in the AHU. 
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Fig. 5 Schematic of an AHU 

71
 (The sensors used in this work are indicated using bold font) 

 

Based on the above classification method, the above documents summarize the unelaborated and typical 

literature, as shown in Table 5. 

 

Table 2 Faults of AHU 
Typesof AHU 

component faults 

Device or cause Fault type 

Equipment failure System disturbance Model uncertainty leads to sensitivity to 

perturbations. 
 Equipment structure failure Air leakage from the duct 

Coil contamination 72 

Actuator failure OA, RA, and EA dampers A damper is stuck or a fault 
the position is operated73, 74 

Air leakage occurs at fully open-and-closed 

positions75 
 Heating coil (HV), 

cooling coil (CV) and 

preheating coil valve 
(PV) 

A valve is stuck, broken, or wrong operated 

position74, 76 

Leakage occurs at fully open-and-closed 
positions of the valve72, 76, 77 

Faulty sensor SA, MA, OA and RAtemperature Failures of a sensor are offset, discrete, or drift75, 

77, 78 
 MA, OA, and RAhumidity Failures of a sensor are offset, discrete, or drift79 

 OA, SA, and RA flow rate Failures of a sensor are offset, discrete, or drift79 

 SA and zone pressure Failures of a sensor are offset, discrete, or drift77 
Feedback controller 

failure 

Motor modulation Unstable response 

 The sequence of heatingand cooling coil valve Unstable response 
 Flow difference The system sticks at a fixed speed72 

 Static pressure Unstable response 

 Zone temperature Unstable response 

 

5.2 Chiller 

The main components of the chiller are the evaporator, condenser, expansion valve, and compressor. 

The refrigeration cycle in chillers can be illustrated: After removing the building's heat, the chilled water enters 

the evaporator and transfers the heat to the refrigerant at a lower temperature. The refrigerant evaporates, and 

the refrigerant vapor enters the compressor, where the vapor with low pressure and low temperature is 

compressed into the vapor with high pressure and high temperature. Flowing out of the compressor, the 

refrigerant vapor enters the condenser and rejects the heat to the cooling water. In the condenser, the refrigerant 

vapor condenses into the liquid. The liquid refrigerant with high pressure and high temperature is expanded into 

the liquid with low pressure and low temperature through the expansion valve. Then, the refrigeration cycle 

repeats. Fig.6 indicates the simple schematic of a chiller system with four main components
80

. There are seven 

typical failures in chillers, as shown in Table 3
45, 81-84

. 

Reviewed relevant research literature, and for the 34 studies related to chillers and cooling towers, 79% 
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adopted data-driven methods
12

. Han et al. 
27

 diagnosed multiple-simultaneous faults (MSF) in water chillers, 

including FWC and FWE faults, using an FDD model based on SVM and multi-label(ML). Wang et al. 
45

 

proposed an FDD model based on BN and PCA to diagnose seven typical faults in the chiller in Table 3 and 

divided each fault into four severity levels. They detected and diagnosed each fault at each severity level under 

27 operating conditions. Zhao et al. 
51

 proposed a combined model based on the EWMA control chart and SVR 

to diagnose six typical faults except for Excess oil in Table 3 of the chiller, and Tran et al. 
52

 proposed a 

combined model of LSSVR and EWMA control chart. It diagnoses RO, CF, NC, and RL faults in centrifugal 

chiller systems. In addition, most of the research focuses on the compression chiller, and there is little research 

on the absorption chiller. The absorption chiller has a larger construction capacity and a more complex structure, 

so it needs a more accurate FDD model to detect and diagnose faults. 

Based on the above classification method, the above documents summarize the unelaborated and 

typical literature, as shown in Table 5. 

 

 
Fig. 6Schematic diagram of a chiller system with four main components: 1—Compressor, 2—

Condenser, 3—Expansion Valve, 4—Evaporator 

 

Table 3 Fault of chiller 
Number Fault type 

1 Reduced condenser water flow (FWC) 

2 Reduced evaporator water flow (FWE) 

3 Condenser fouling (CF) 
4 Non-condensable gas (NC) 

5 Excess oil 
6 Refrigerant overcharge (RO) 

7 Refrigerant leak/undercharge (RL) 

 

5.3 HVAC system 
The HVAC system consists of a VAV, a VRF, a heat pump, a residential air conditioner, and a vapor 

compression refrigeration system (VCRS). There are several types of faults that may occur in each system, 

resulting in poor operation, increased energy consumption, and reduced indoor air quality, such as sensor and 

actuator faults
85, 86

, valve leakage, and RCA faults. The fault types are shown in Table 4 below. 

For faults in VAV air conditioning systems, Shahnazari et al. 
41

 proposed an FDD model based on RNN 

to detect multiple simultaneous faults in the system. Yan et al. 
87

 used a model based on kernel principal 

component analysis (KPCA) with a double-layer bidirectional long short-term memory (DL-BiLSTM) to detect 

minor soft faults of sensors. Wang et al. 
88

 proposed an FDD model based on a self-adaptive model and layered 

random forest to diagnose sensor faults, reduced airflow and hardware failure. 

For RCA faults in VRF air conditioning systems, Sun et al. 
31

 proposed a hybrid FDD model based on 

WD and SVM to diagnose and detect faults, and Sun et al. 
38

 used a combined model of independent component 

analysis (ICA) and BPNN to detect them. Wang et al. 
89

 proposed a model  
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detection method based on PCA and Gaussian naive Bayesian to diagnose RCA faults, compressor 

liquid floodback, and Four-way valve failure in VRF air conditioning systems. 

Chintala et al. 
90

 proposed a method based on Thermostat driven algorithm to diagnose duct-leak faults, 

indoor airflow faults, and refrigerant undercharges in Residential Air Conditioners. Kocyigit et al.
37

used the 

model based on a fuzzy inference system (FIS) and artificial neural network (ANN) to diagnose and detect 

compressor valve leakage, improper refrigerant charge, evaporator fan failure, and other faults in VCRs. Sun et 

al.
91

 proposed a model based on the Convolution- sequence model and Convolutional neural network (CNN) to 

diagnose fouling and refrigerant leakage faults in air source heat pumps (ASHP). 

Based on the above classification method, the above documents summarize the unelaborated and 

typical literature, as shown in Table 5. 

 

Table 4 HVAC Faults 
Equipment Fault type 

VAV Sensor and actuator failure 41, 87, 88, 92 
 The damper stuck 92, 93 

 Hardware failure88 

 Reduced or improper airflow88, 93, 94 

VRF RCA faults31, 38, 89 
 Four-way valve failure89 

 Condenser and evaporator fouling95 

 Compressor liquid floodback89 
Residential Air 

Conditioner 

Condenser and evaporator fouling96 

 Reduced or improper refrigerant charge90, 96 
 reduced airflow90, 96 

VCRS Compressor valve leakage65, 97 

 Refrigerant Undercharge/Overcharge 65, 97, 98 
Evaporator low indoor airflow 97 

Condenser low outdoor airflow 97 

Heat pump refrigerant leakage91 

 Fouling91 

 

5.4 Summary of research on data-driven FDD in air conditioning system 

As shown in Table 5, the diagnostic methods, method classification, and diagnostic effects used in 

various components of air conditioning systems in the current relevant literature are summarized after 

summarizing common faults and research status for air conditioning system components. 

 

Table 5 Summary of faulty components, diagnostic methods, and results 

System 
Classification of 

methods 
Diagnostic method and principle Diagnostic results 

AHU 49 Hybrid methods 

Double neural network and subtractive clustering 

analysis； 

The double neural network detects the 

abnormality of the AHU, and different faults can 
be divided into different spatial zones in the data 

space through subtractive clustering analysis. 

The double neural network has 
better detection efficiency than 

every single neural network. 

AHU 68 Supervised method 

APAR rule and Bayesian belief network; 
Use APAR  for fault diagnosis, and BBN 

prioritizes the faults when multiple rules are 

satisfied simultaneously. Information can also be 
derived from historical data to provide a 

diagnosis. 

It effectively overcomes the problem 
that the APAR rule can not provide 

the source diagnosis of the fault. 

AHU 69 Supervised method 

Classification and regression trees(CART) ; 

The decision tree is induced by the CART 
algorithm and validated by both 

testing data and expert knowledge 

The results show that the strategy 

has good diagnostic performance, 

and the average F-measure is 0.97. 

AHU 70 
Unsupervised 

method 

Temporal Association Rules Mining (TARMs) 

and classification trees； 

Use TARM  for fault detection during the 

start-up period of transient operation, and use the 
decision tree  for fault diagnosis during the 

non-transient period 

The model showed an overall 

accuracy of 90% 

 

AHU 99 
Supervised method 

ANN and supervised auto-encoder (SAE); 

Using the reconstruction error of SAE, the fault 
diagnosis can be carried out only when the FDD 

model can provide inference for the input 

variables. Otherwise, perform the retraining of 
the FDD model input. 

The retrieval probabilities are 98.7% 

and 95.6%, respectively. 
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AHU 100 Hybrid method 

Enhanced kernel slow feature analysis (SFA)； 

To identify the fault, the SFA model calculates 

the similarity between the existing fault direction 
and the historical fault direction. 

The experimental results show that 
performing the proposed model is 

significantly improved compared to 

the traditional model. 

Chiller 52 Supervised method 

DE-LSSVR-EWMA； 

Most little squares support vector regression is 
performed on the data and diagnose the fault 

based on the estimation of the average and 

variance of the observation. 

Accuracy: 99.73% The accuracy of 

this model is high. 

Chiller 80 Hybrid method 

Semi-generative adversarial network; 

Moreover, effectively use that unlabeled data to 
improve the fault diagnosis performance. 

The diagnostic accuracy was 84%. 
Compared with the neural network, 

the number of samples required is 

reduced by approximately 60%. 

Chiller 81 Hybrid method 

LDA and predefined fault clusters;  
Divide the FDD process into two stages. First, 

LDA is used to reduce the dimension, and then 

the predefined fault clusters are used to detect 
the fault type. 

Accuracy: 87–98.8% 

Chiller 82 
Unsupervised 

method 

generative adversarial networks; 

Using the variational auto-encoder (VAE) and 
the GANomaly to select high-quality synthetic 

fault data samples with the generative 

adversarial networks. 

Experiments show that the model 
has high FDD accuracy with only a 

tiny amount of accurate fault data. 

VAV air 

conditioni-ng 87 
Hybrid method 

KPCA-DL-BiLSTM; 
Detect Soft faults  by comparing the output data 

with the actual value of the sensor 

Accuracy was 43% higher than 
KPCA and 18.33% higher than Long 

Short-Term Memory (LSTM). 

VAV air 

conditioni-ng 

system 88 

Hybrid method 

self-adaptive model and layered random forest； 

Self-adaptive zone air-temperature model is used 

to detect faults, and expert rule-based fault 

diagnosis layer and random forest-based are 
developed to isolate faults. 

The FDD method is a reliable and 

practical technique for processing 

multiple faults of VAV terminals. 

VAV air 

conditioni-ng 101 

Unsupervised 

method 

ARM; 

Extract all correlations between air conditioning 

system operation data to find system fault 

Results are accurate but 

time-consuming 

VRF air 

conditioni-ng 

system 102 

Hybrid method 
PCA and Gaussian mixture model; 
Fault Diagnosis Using Gaussian Mixture Model 

Reduce the running time from 

176.78s to 15.18s, and the fault 

diagnosis accuracy is over 99%. 

VRF air 
conditionin-g 

system 89 

Hybrid method 

PCA, Gaussian naive Bayesian, RUSBoost 
algorithm; 

PCA is used to reduce the dimension of the data, 

the Gaussian naive uses the Bayesian model to 
diagnose the fault, and the RUSBoost algorithm 

solves the problem of unbalanced data sets. 

98.6% accuracy 

VCRS 37 Hybrid method 

Fuzzy logic and artificial neural network； 

Using the FIS diagnostics fault of the 

refrigeration system from the sensor data. ANN 

was used for the prediction of the fault condition 
when it 

was trained to identify the fault. 

 

The FIS and ANN-based 
diagnosticsystemseffectively 

detected the problems and classified 

the faults in the study. 

Heat pump 91 Supervised method 

Convolution-sequence model and CNN； 

Convolution-sequencemodelfor general fault 

diagnosis, the CNN with an optimized 
convolution kernel is used todiagnose the 

specific failure of ASHP systems 

the method proposed in this paper is 
a workable 

and practical diagnosis method for 

gradual fault in ASHP systems 

 

VI. Future research suggestions 

Based on the literature review and analysis, we concluded that data-driven methods have great potential 

in the field of fault detection and diagnosis (FDD) for air-conditioning systems. However, most of these 

approaches are not yet ready for practical application, and many aspects need to be improved. In light of this, 

the following suggestions are made for future research: 

 There are advantages to both the supervised and unsupervised methods. However, there are limitations to 

the single diagnosis method in terms of accuracy, range of diagnosis, speed of diagnosis, model applicability, 

and calculation. Both methods can be combined in the future to complement each other. 

 Currently, there is little research being conducted on multiple simultaneous faults and enhancing the 

development of models in this area. 

 The HVAC system consists of a number of subsystems. At present, each subsystem has its own FDD model. 

To improve the efficiency of the FDD, we need to strengthen the correlation between multiple subsystems of the 

FDD in the future. 
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 Domain knowledge plays a crucial role in enhancing the intelligence of data-driven methods, and domain 

knowledge should be used to develop new data-driven methods. 

 

VII. Conclusion 

In this paper, a comprehensive literature review is presented regarding fault detection and diagnosis 

methods in HVAC systems, as well as classifications and analyses of data-driven methods. This paper 

summarizes and compares the advantages and disadvantages of supervised and unsupervised data-driven 

methods, and identifies typical HVAC subsystems and faults. Furthermore, the data-driven FDD method will be 

applied in each subsystem in a practical manner.    

The supervised methods are insufficient to detect new faults and multiple simultaneous faults, and they 

cannot detect their synergistic effects with high precision. Unsupervised methods usually require a lot of time 

and effort to calculate data. It is also easy to obtain incorrect results when using unsupervised methods. 

Compared to the unsupervised method, the supervised method is more accurate and capable of modeling. Using 

the unsupervised method, faults and unknown patterns in the data can be effectively identified without the need 

for high-quality training data. There are advantages and disadvantages to both methods. In order to improve the 

accuracy, range, speed, and applicability of model diagnosis, hybrid methods are developed and combined with 

the advantages of different methods so as to avoid the defects of a single method and overcome its limitations. 

A great deal of potential has been demonstrated by data-driven methods for detecting and diagnosing 

HVAC system faults. In spite of this, most data-driven methods are not suitable for practical applications, and in 

the near future, it will be imperative to develop general and intelligent methods. 
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