Further Results on Strongly Perfect Graphs

Mahadevaswamy.B.S.

Department of Mathematics Maharani's Science College for Women Mysore, Karnataka, India – 570 005

ABSTRACT

In this paper, we prove – strongly perfect graphs are the line graph $L(G)$ of (0 bipartite graphs, Cartesian product of non-trivial graphs and tensor product Key Words: Induced subgraph, product graphs, cartesian product, Tensor produ),1), cartesian product of graphs, graph. oduct.
Date of Submission: 22-12-2022	Date of acceptance: 03-01-2023

I. INTRODUCTION:

The strongly perfect graphs were first introduced by Claude Berge at a Monday Seminars, M.S.H., Paris, 1978. A graph is strongly perfect if each of its induced subgraphs H contains an independent set which meets all the cliques (maximal complete subgraphs) in H. That is a graph is strongly perfect if each of its induced subgraphs contain a good independent set. The strongly perfect graphs form an interesting class of perfect graphs because of the following:

1) Complement of a strongly perfect graphs not necessarily strongly perfect unlike the complement of a perfect graph.

2) In view of Ravindra's conjecture (33) that every p-critical graph is sp-critical, the strongly perfect graphs are closely related to solution of the famous unsettled Berge's Strong Perfect Graph Conjecture.

3) A strongly perfect graph serves as one of the best mathematical models for a situation where one would like to choose an optimal set of leaders from a given set of people (Ravindra (52)).

Berge and Duchet (6), Ravindra (31, 32), Chvatal (17) and Hoang (29) have obtained several interesting results in the area of strongly perfect graphs. We list all of these in the form of Facts as below for the sake of ready reference and completion.

FACT 1 (6, 31). Every P₄ – free graph is strongly perfect.

FACT 2 (6). Every triangulated graph is strongly perfect.

FACT 3.Every comparability graph is strongly perfect.

FACT 4 (6). A perfect graph G = (V, E) is strongly perfect iff no two families $C = (C_1, C_2, ..., C_k)$ and $D = (D_1, D_2, ..., D_k)$ of maximal cliques (with possible repeated cliques) satisfy

|C| = |D| and |C(v)| > |D(v)| for all $v \in V$. (C(v) is the sub-family of the cliques of C which contain v, D(v) has the similar meaning).

FACT 5 (32). If every odd cycle of length at least five in a graph G has at least two chords, then G is strongly perfect.

FACT 6 (61). The line graph L(G) of a graph G is strongly perfect if and only if each of the following properties is true.

i) Every block of G is either bipartite or K_{4-e} or $Kp(3 \le p \le 4)$.

ii) If C_r and C_s are two even cycles such that $V(C_r) \cap V(Cs) \neq \theta$, then $|V(C_r) \cap V(Cs)|$ is even.

iii) If C_i and C_j are two disjoint even cycles in G then all paths in G connecting C_i and C_j are of odd length. **FACT 7 (31).** A line graph L (G) of G is stronglyperfect iff it does not contain C_{2n+1} ($n \ge 2$) or any of the graphs in Fig. 2, 3 as an induced subgraph.

FACT 8 (31). For a total graph T(G) of G the following properties are equivalent.

i) T (G) is strongly perfect.

ii) T(G) is perfect

iii) Every block of G is either K_2 or K_3 .

FACT 9 (34). Every strongly perfect B-graph contains a maximum and minimum good stable set.

Though Fact 4 gives a necessary and sufficient condition for a graph to be strongly perfect, there is no characterization of strongly perfect graphs in terms of forbidden subgraphs (that is, a complete set of sp-critical graphs is not known). However, some of the forbidden subgraphs are identified by Ravindra. Berge (Fig.1) Chvatal (Fig.2, personal communication to Ravindra), Maffray (Fig. 3, personal communication to Ravindra).

Further, with respect to $K_{1,3}$ – free graphs, Ravindra (33) has Conjectured that C_{2n+1} ($n \ge 2$), \overline{C}_n ($n \ge 5$) and the graphs of the Fig.3 are the only sp-critical graphs.

To solve an assignment problem, in operations research, one has to ensure that the maximum number of independent zeros in an effectiveness matrix to be equal to the minimum number of lines covering all the zeros. Since (0, 1) – graphs are perfect, in view of the above fact, (0, 1) – graphs have direct link with the solution of an assignment problem.

2. Strongly Perfect (0,1) – graphs

Fact 7 shows that there are (0, 1) – graphs which are not strongly perfect. For example, consider the following graphs (4) as special cases of G₁, G₂ and G₃ of Fig. 3 respectively.

Let

A =	$\left\lceil \frac{1}{1} \right\rceil$	1	0	0	0	
	1	1	1	0	0	
	0	0	1	1	1	
	0	0	0	1	1	

It can be verified that graph G_4 is the (0, 1) – graph of A. Similarly, we can see that G_5 and G_6 are (0, 1) – graphs of some (0, 1) – matrices. Therefore, by Fact 7, the (0, 1) – graphs G_4 , G_5 and G_6 are not strongly perfect.

THEOREM 2.1. : The line graph L (G) of a (0,1) – graph G is strongly perfect iff it has no C_{2n+1} ($n \ge 2$) an induced subgraph.

Proof: Suppose that the line graph L (G) of a (0,1) – graph G is strongly perfect. Then by virtue of Fact 7, L(G) does not contain C_{2n+1} ($n \ge 2$) as an induced subgraph. On the other hand, suppose that L(G) does not contain C_{2n+1} ($n \ge 2$) as an induced subgraph. If L (G) is not strongly perfect, then by Fact 7, L(G) contains G₁, G₂ or G₃ as an induced subgraph. That is G contains the following graphs (Fig.5) as subgraphs.

If G_7 is a subgraph of G, then we show that the induced subgraph on V_1 , V_2 , V_{2m} , u_1 , is $K_{1,3}$. For, if the induced subgraphon V_1 , V_2 , V_{2m} , u_1 , is not $K_{1,3}$. Then $(u_1, V_{2m}) \in E$ Lor $(u_1, V_2) \in E$ or $(v_2, v_{2m}) \in E$. If $(u_1, v_2) \in E$ then $u_1, v_2, v_3, \ldots, V_{2m}, v_1 u_1$ is $C_{2m+1} \ (m \ge 2)$. Then this corresponds to an odd induced cycle of length ≥ 5 in L(G), a contradiction. Similarly, $(u_1, v_{2m}) \notin E$. If $(v_2, v_{2m}) \in E$ then the induced subgraph on v_2, v_3, \ldots, v_{2m} is a C_3 or $C_{2r+1} \ (r \ge 2)$ in G. In the former case m = 2 and the induced subgraph of G7 on V_1 , V_2 , V_3 , V_4 is K_4 -E which is a forbidden subgraphfor 0.1 graphs. The later case also does not arise since L(G) does not contain $C_{2r+1} \ (r \ge 2)$ as an induced subgraph. Thus, G contains $K_{1,3}$ as induced subgraph which is a forbidden subgraph for (0, 1) – graphs. Similarly we can show that neither G_8 nor G_9 is a subgraph of G. Hence the theorem.

As an immediate consequence of the above theorem, we have the following.

COROLLARY 2.1.: A perfect line graph of a (0, 1) – graph is strongly perfect.

3. Strongly Perfect Product Graphs.

Ravindra and Parthasarathy (36) studied at length the perfectness of Normal products, Cartesian products, Tensor products and Lexicographic products (compositions) and obtained necessary and sufficient conditions for the three latter products to be perfect.

The following Facts due to Ravindra and Parthasarathy (36) characterize perfect Cartesian and tensor products.

FACT3.1. G₁ X G₂ is perfect iff it has no induced odd cycle of length at least five.

FACT 3.2. $G_1 X G_2$ is perfect iff one of the following holds.

i) G_1 and G_2 are bipartite.

ii) G_1 or G_2 is Meyniel and Z-free and the other is K_2 . (Here Z is the graph of Fig.6).

- iii) $G_1 \text{ or } G_2 \text{ is } K_{t_1, t_2, \dots, t_r}$ Kt1, $(r \ge 3 \text{ and } t \ge 2 \text{ for some i})$ and the other is a tree.
- iv) Every block of G_1 or G_2 is complete and the other is a complete graph.

FACT 3.3. $G_1 \wedge G_2$ is perfect iff either

i) G_1 or G_2 is bipartite, or

ii) both G_1 and G_2 are Y-free Berge (where Y is the graph of Fig.2.2)

Fig. 6

Here we characterise strongly perfect Cartesian and tensor product graphs.

Some of the observations made earlier or elsewhere are useful in proving the following theorems and we list them as lemmas.

LEMMA 3.1.If G is a triangle fee graph and if it does not contain an odd induced cycle of length at least five, then G is bipartite.

Proof: If G has an odd cycle, let C be an odd cycle of G with minimum (least) length (\geq 5). If C has a chord e, then e will divide the vertices of C into an odd and even cycles of lengths at least 5 and 4 respectively, contradicting minimality of C. Therefore, C is an induced odd cycle of length at least 5, a contradiction. Thus G has no odd cycle and hence it is bipartite.

LEMMA 3.2. C_n n \ge 5 is not strongly perfect.

Proof: Let $V_1 V_2 \ldots V_n$ be the cycle C_n . Let $e_i = V_i V_{i+1}$ (subscripts taken addition modulo n) be an edge of C. e cannot meet the maximal independent set containing $V_{i-1} V_{i+2}$. This implies that no edge of C_n meets all

the maximal independent sets in it. That is, C_n does not contain an independent set which meets all the cliques in it. Thus G is not strongly perfect.

THEOREM 3.1. Let G be a Cartesian product of graphs other than K_1 . Then G is strongly perfect if and only if it is bipartite.

Proof : Since a bipartite graph is obviously a strongly perfect graph, it is enough to prove that strongly perfect Cartesian product of non-trivial graph is bipartite.

Let $G = G_1 X G_2$ where G is strongly perfect and G_1 and G_2 are some graphs other than K_1 . We now claim that G_1 and G_2 are bipartite. If G_1 and G_2 are not bipartite, let without loss of generality G_1 not be a bipartite graph. Then by Lemma 3.1 G_1 contains a K_3 as G_1 is strongly perfect. Since G_2 is non trivial, it contains a K_2 . But then G contains $K_3 X K_2 = \overline{C}_6$ (Fig.7) as an induced subgraph, a contradiction in view of Lemma 3.2, establishing G_1 and G_2 are bipartite.

Let $V_1 = V_{11} \cup V_{12}$ and $V_2 = V_{21} \cup V_{22}$ be, respectively bipartitions of G_1 and G_2 . By definition of Cartesian product of graphs, it is not difficult to verify that G is a bipartite graph with bipartition $V = (V_1 - \tau, V_2 + +, V_3 - V_4) + (V_2 - \tau, V_3 + +, V_3 - V_4)$

 $V = (V_{11} \times V_{21} \cup V_{12} \times V_{22}) \cup (V_{11} \times V_{22} \cup V_{12} \times V_{21}).$ Since the Cartesian product $G = G_1 \times G_2$ is bipartite iff G_1 and G_2 are bipartite, the above theorem implies immediately.

COROLLARY 3.1: Let G be a Cartesian product of non-trivial graphs G_1 and G_2 . Then G is strongly perfect iff G_1 and G_2 are bipartite.

COROLLARY 3.2: For a Cartesian product G of non trivial graphs, the following properties are equivalent.

i) G is very strongly perfect.

ii) G is strongly perfect.

iii) G is bipartite.

iv) G is perfectly orderable.

Proof	: i)	\Rightarrow	ii)	(by definition)
	ii)	\Rightarrow	iii)	(by Theorem 3.1)
T	•••	• 、	1.0.1	 1 1.1 1.1

To prove iii) \Rightarrow iv), assume that G is a bipartite graph with bipartition $V = U \cup W$. Define a linear order < on V by x < y iff $x \in \cup$ and $y \in W$. If abed is a P₄ in G with $a \in U$, then by the definition of <.a< b and c < d (since G is bipartite). Thus V admits a linear order < such that no induced P₄ has a < b, d < c and hence G is perfectly orderable. Iv) \Rightarrow ii) by the Fact 9. Since iv) \Rightarrow ii), ii) \Rightarrow iii) and iii) \Rightarrow i) (as every bipartite graph is very strongly perfect), it immediately follows that iv) \Rightarrow i).

THEOREM 3.2. A tensor product graph is strongly perfect if and only if it is bipartite.

Proof: Suppose $G = G_1 \wedge G_2$ is strongly perfect graph. If G_1 or G_2 is K_1 , then all the vetices of G are isolated vertices, in which case G is obviously bipartite. Since $K_3 \wedge K_3$ contains \overline{C}_6 (1 2 3 4 5 6) as an induced subgraph (Fig. 4, 8), G_1 or G_2 is triangle free. Let without loss of generality G_1 be triangle free.

Fig. 9

 G_1 , being a strongly perfect graph, does not contain an odd induced cycle of length at least 5. Hence by Lemma 3.2, G_1 is bipartite. Let $V_1 = V_{11} \cup V_{12}$ be a bipartition of G_1 . By definition of tensor product of G_1 and G_2 clearly $V_{11} \times V_2$ and $V_{12} \times V_2$ are independent sets and thus G is bipartite graph.

Since every bipartite graph is strongly perfect, the other part of the theorem follows immediately.

Since the tensor product of any two odd cycles contains an odd cycle, it follows immediately that $G = G_1 \wedge G_2$ is bipartite iff G_1 or G_2 is bipartite. In view of this, the above theorem can be restated as follows:

COROLLARY 3.3. $G = G_1 \wedge G_2$ is strongly perfect iff G_1 or G_2 is bipartite.

COROLLARY 3.4. For a tensor product graph, G the following are equivalent.

- i) G is very strongly perfect.
- ii) G is strongly perfect.
- iii) G is bipartite graph.
- iv) G is perfectly orderable.

Proof of this Corollary is similar to that of Corollary 3.2.

REFERENCES

- [1]. BERGE, C. Perfect Graphs, Six Papers in Graph Theory, Indian Statistical Institute, Calcutta, 1963.
- [2]. BERGE, C. Some Classes of Perfect Graphs, Chapter 7 in 'Lectures on Graph Theory', Tata Institute of Fundamental Research, Bombay, 1967, 30-47.
- [3]. BERGÉ, C. Some Classes of Perfect Graphs, Chapter 5 in 'Graph Theory and Theoretical Physics' (Ed. By F. HARARY), Academic Press, New York, 1967, 49-57.
- [4]. BERGE, C. Short Note about the History of the Perfect Graphs Conjecture, International Colloquium on 'Problems in Combinatorics and Graph Theory', Paris, 1976.
- [5]. BERGE, C. and CHVATAL, V. (Eds). 'Topics on Perfect Graphs' Annals of Disc. Math. 21, Amsterdam, North Holland, 1984.
- [6]. BERGE, C. and DUCHET. P. Strongly Perfect Graphs, in 'Topics on Perfect Graphs' (Eds. C. BERGE and V. CHVATAL), Annals of Disc. Math. 21, 1984, 57-61.
- [7]. CHVATAL, V. On the Strong Perfect Graph Conjecture, J. of Comb. Theory B, 20, 1975, 139-141.
- [8]. CHVÁTAL, V. Star Cutsets and Perfect Graphs, J. of Comb. Theory B, 39, 189-199.
- [9]. CHVÁTAL, V. 'Recent Results on Perfect Graphs' Technical Report, Dept. of Computer Sci., Rutgers University, 1987.
- [10]. CHVÁTAL, V. and HOANG, C.T. On the P₄ Structure of Perfect Graphs, J. of Comb, Theory B, 39, 1985, 209-219.
- [11]. CHVÁTAL, V. and SBIHI, N. Bull-free Graphs are Perfect. Graphs and Combinatorics, 3, 1987, 127-139.
- [12]. FULKERSON, D. R. The Perfect Graph Conjecture and Pluperfect Graph Theorem, Proc. Of the Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, 1969, 171-175.
- [13]. FULKERSON, D.R. On the Perfect Graph Theorem, Technical Report, College of Engineering, Cornell University, July 1972.
- [14]. GOLUMBIC, M.C. 'Algorithmic Graph Theory and Perfect Graphs', Academic Press, New York, 1980.
- [15]. HAYWARD, R.B. Weakly Triangulated Graphs, J. of Comb, Theory B, 39, 1985, 200-208.
- [16]. HAYWARD, R.B. Murky Graphs are Perfect, J. of Comb. Theory B (to appear).
- [17]. HOANG, C.T. Alternating Orientation and Alternating Colouration of Perfect Graphs, J. of Comb. Theory B, 42, 1987, 264-273.
- [18]. HOANG, C.T. and READ, B.A. Some classes of Perfectly Orderable Graphs, j. of Graph Theory, Vol. 13, No. 5, 1989, 445-463.
- [19]. LIPING SUN. Two classes of Perfect Graphs, Technical Report, Dept. of Computer Sci., Rutgers University, 1987.
- [20]. LOVÁSZ, L. A Characterization of Perfect Graphs, J. of Comb. Theory B, 13, 1972, 95-98.
- [21]. LOVÁSZ, L. Normal Hypergraphs and the Perfect Graph Conjecture, Disc. Math. 2, 1972, 253-267.
- [22]. MEYNIEL, H. On the Perfect Graph Conjecture, Disc. Math. 16, 1976, 339-342.
- [23]. OLARIU, S. A decomposition of Strong Perfect Graphs, J. of Graph Theory, Vol. 13, No. 3, 1989, 301-312.
- [24]. OLARIU, S. Strong Perfect Graph Conjecture for Pan-free graphs, J. Comb. Theory (to appear).
- [25]. OLARIU, S. and SACHS, H. Contributions to a characterization of the structure of Perfect Graphs, in 'Topics on Perfect Graphs' (Eds. C. BERGE and V. CHVATAL), Annals of Disc. Math. 21, 1984, 121-144.
- [26]. PADBERG, M.W. Perfect Zero-one Matrices, Math. Programming, 6, 1974, 180-196.
- [27]. PARTHASARATHY, K.R. and RAVINDRA, G. The Strong Perfect Graph Conjecture is true for K_{1,3} free graphs, J. of Comb. Theory B, 21, 1976, 212-223.
- [28]. PARTHASARATHY, K.R. and RAVINDRA, G. The Validity of Strong Perfect Graph Conjecture for (K₄-e) free graphs, J. of Comb. Theory B, 26, 1979, 98-100.
- [29]. RAO, S.B. and RAVINDRA, G. A Characterization of Perfect Total Graphs, J. of Math, and Phy. Sci., 11(1), 1977, 25-26.
- [30]. RAVINDRA, G. On Berge's Conjecture Concerning Perfect Graphs, Proc. Of the Indian National Sci. Academy, Vol. 41, Part A, No. 3, 1975, 294-296.
- [31]. RAVINDRA, G. Strongly Perfect Line Graphs and Total Graphs, Colloquia MathematicaSocietatis Janos Bolyai, 37, Finite and Infinite Sets, Eger (Hungary), 1981, 621-633.

- [32]. RAVINDRA, G. Mayniel Graphs are Strongly Perfect, in 'Topics on Perfect Graphs' (Eds. C. BERGE and V. CHAVATAL), Annals of Disc. Math. 21, 1984, 145-148.
- [33]. RAVINDRA, G. Research Problems, Disc. Math, 80, 1990, 105-109.
- [34]. RAVINDRA, G. Strongly Perfect Graphs, Fourth International Conference on Graph Theory and Combinatories, Marseille-Luming, France, 9-13 July, 1990.
- [35]. RAVINDRA, G. Strongly Perfect Graphs, Invited talk at Sixth Annual Conference of Ramanujan Mathematical Society, 1-3 June 1991, Rajkot, India.
- [36]. RAVINDRA, C. and PARTHASARATHY, K.R. Perfect Product Graphs, Disc. Math. 20, 1977, 177-186.
- [37]. TUCKER, A. The Strong Perfect Graph Conjecture for Planar Graphs, Canad. J. of Math. Vol. xxv No.1, 1973, 103-114.
- [38]. TUCKER, A. Perfect Graphs and an Application to Optimizing Municipal Services, SIAM Rev. 15, 1973, 585-590.
- [39]. TUCKER, A. The Validity of Perfect Graph Conjecture for K₄ free graphs, in 'Topics on Perfect Graphs' (Eds. C. BERGE and V. CHVATHL), Annals of Disc. Math. 21, 1984, 197-206.
- [40]. TUCKER, A. A Coloring (K₄-e) free Graphs, J. Comb. Theory B. (to appear).