
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 10 Issue 9 ǁ September 2022 ǁ PP. 105-114

www.ijres.org 105 | Page

A Sipmple Policy Update System for Sharing Outsourced

Personal Health Records

Mr.D Surendra
1
, B.Neelima

2

1
Assistant Professor,Dept of CSE, Audisankara College of Engineering and

Technology(AUTONOMOUS),Gudur,AP,India.
2
PG Scholar,Dept of MCA, Audisankara College of Engineering and Technology(AUTONOMOUS),Gudur,AP,India.

Abstract

Electronic personal health records (PHRs) are used by many healthcare providers due to the high flexibility and

accessibility of data outsourcing environments like the cloud computing environment. This enables individual

patients to manage their own health data in such a resilient and scalable environment. However, because PHRs

hold such sensitive data, security and privacy concerns are of paramount importance. Additionally, PHR owners

should be allowed to set their own flexible and secure access policy for their outsourced data.Existing

commercial cloud systems often offer symmetric or public key encryption as an add-on function to enable data

secrecy for their tenants, in addition to the fundamental authentication capability. However, due to the

significant key management overhead of symmetric encryption and the high maintenance costs associated with

managing multiple copies of ciphertext for public key encryption solutions, such conventional encryption

algorithms are not appropriate for a data outsourcing context. In this research, we design and construct a

lightweight access policy updating system with safe and fine- grained access control for outsourced PHRs. Our

suggested method is based on proxy re- encryption and ciphertext policy attribute- based encryption (CP-ABE)

(PRE). To ensure complete traceability of policy changes, we also develop a policy versioning approach. Finally,

we carried out the performance review to show how effective the suggested plan performs.

Keywords: PHRs, access control, CP-ABE, policy update, proxyre-ncryption, policy versioning, performance

evaluation.

--- ----------

Date of Submission: 25-08-2022 Date of acceptance: 09-09-2022

--- ----------

I. Introduction

In a shared data environment that is outsourced, like a cloud storage system, the outsourced server

must always be accessible to offer unrestricted access to shared data and services. Due to the cost savings and

effective resource management offered by cloud providers, many businesses and individuals now prefer to

store their important data on external servers like cloud storage. Prior to outsourcing their data to a cloud

server, data owners typically encrypt their data to address privacy and security concerns. The best approach to

safeguard sensitive information from unwanted access is to encrypt it. However, encryption by itself is

insufficient to ensure strict security control. Another security perimeter that is usually necessary is an access

control system. Attribute-based encryption (ABE)

[1] has been widely used in various works as a solution to this issue. One-to-many encryption with

granular access control is offered by ABE. Additionally, it has access control and encryption features.

Ciphertext-policy attribute-based encryption (CP-ABE) and key-policy attribute-based encryption are the two

forms of ABE (KP-ABE). In CP- ABE, the data is encrypted using access policy and the user's decryption key

is created using attributes. In KP-ABE, the encryption is carried out via a collection of characteristics while

the user key is connected to the access policy. In terms of security enforcement, CP-ABE is favoured since the

data owner may choose their own encryption policy. Using CP-ABE has benefits for managing group keys [3].

Decoupling abstract qualities from real keys is one of them. It lowers connection costs and offers granular data

access management. It also accomplishes flexible one-to-many encryption rather than one-to- one, and it is

seen as a potential solution for tackling the issues of safe and fine- grained data sharing and decentralised

access control. However, when an attribute is revoked or a policy is updated, CP-ABE adds costly overheads

such as ciphertext re-encryption, key re-generation, and key re-distribution. Because of the strong propagation

effect to both ciphertext and user decryption key, these revocation and policy update actions must be carried out

carefully. The calculation and transmission costs associated with key update are very expensive, especially

when there are many users. The cost of data re-encryption and policy updates falls on the shoulders of the data

owner, but the cost of communication depends on how many ciphertexts must be downloaded and re-uploaded

from and to the data outsourcing environment. Such administrative burdens result in ineffective

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 106 | Page

implementation for actual data exchange scenarios. Additionally, it's conceivable that encryptors won't even

be accessible when an update to the access policy is required.

In this research, we discover a practical method for updating CP-ABE access rules without requiring a

new encryption procedure on the part of the data owner. Regarding the idea of PHRs being shared, the data

owner, such as a patient, can share their data with anyone they like on a selective basis. We use symmetric

encryption to encrypt data since it offers superior encryption performance, while the symmetric key is

encrypted using the CP-ABE technique, in order to provide efficient encryption and increased efficiency of data

access and policy updating. The cost for updating the policy only impacts the encrypted symmetric key since

we utilise the CP-ABE technique to encrypt the symmetric key. Therefore, it is not necessary to re-encrypt all

ciphertexts.This considerably lowers the proxy side calculation cost. Technically, the ciphertext re-encryption,

which is the principal expense of policy updating, is handled by the proxy re-encryption (PRE) protocol.

The following is a summary of our contributions.

1. In a multi-authority data outsourcing scenario, we provide an access control approach for PHRs with

lightweight policy updates. With our cryptographic design and newly introduced PRE technique, the re-

encryption operation is offloaded to the proxy when the policy is amended, leaving the data owner to handle

minor computation. Based on two-step encryption, the cost for both the data owner side and the proxy side

is optimised.

2. We provide a policy versioning mechanism that enables all update events to be accurately

documented and allows for the reconstruction of earlier iterations of any policy for full analysis at any time.

3. To parallelize all crypto processes in the PRE system, we use parallel programming. According to our

concept, the system will effectively re-encrypt all ciphertexts affected by a change in policy when the policy is

revised.

4. To prove that our suggested approach is secure and effective for actual implementation, we offer

security and performance studies.

The remainder of this essay is structured as follows. Section II discusses historical context and associated

research. Section III provides background information on CP-ABE. The system we suggest is shown in

Section IV. The method of policy versioning is presented in Section IV.The security analysis is presented in

Section VI. The experiment and assessment are provided in Section

VII. The paper is concluded in Section VIII.

II. Literature Survey

One of the main overheads in CP-ABE that is degrading scalability and efficiency is policy updating.

A data owner updates the policy by adding, changing, or removing logical gates (AND, OR, or M of N) or

attribute values from the policies. Here, the data owner must first retrieve the policies that are often kept on site

before updating the data. All ciphertexts that have been encrypted by the impacted policy must be re-encrypted

after it has been modified. The ciphertexts will be transferred to the cloud after being re- encrypted.These

procedures are often carried out by the data owners, who are also affected by the processing and

communication overhead. In a PHR management situation, patients may need to alter the access policy used to

encrypt their medical data in order to permit access to their medical treatments by other doctors at various

institutions.

In general, there are two ways to provide policy updating in a CP-ABE setting: ciphertext update and proxy

re- encryption (PRE).

A. CIPHERTEXTUPDATE

This approach requires the data owners to create update keys or tokens and submit them to the external

server hosting the cyphertexts. The computation of the impacted characteristics yields the update keys, which

are then used to update the associated ciphertext components. The access matrix and mapping functions are

immediately impacted when there is a change in policy in most techniques adopting this mechanism, which

rely on the linear secret sharing scheme (LSSS) [5, [10].

Belguith et al[4] .'s efficient access policy updating technique, for instance, uses small size ciphertext.

Although this method is built on KP-ABE, which restricts data owners' capacity to define their own access

policies. Additionally, the data owner is required to create the entire updated ciphertext. The burden of

calculation shifts to the data owner as a result.

Li et al. suggested an effective policy update and file update for the CP-ABE setup in [5]. The key

update produced by the data owner is used to update the ciphertext components. It lowers the client's

storage and communication expenses. Additionally, it is shown that the proposed system is safe while

assuming a decision q-parallel bilinear Diffie- Hellman exponent. However, in addition to creating the

update keys based on the LSSS concept, the data owner must also possess the encrypted parts of the current

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 107 | Page

ciphertext.

To manage policy updates in the cloud server, Kan Yang et al. presented a ciphertext updating

mechanism in . They looked at the cost of changing policies and presented linear secret sharing algorithms for

adding and deleting characteristics from the AND, OR, and threshold gates of ABE policies (LSSS). With this

strategy, data owners must create update keys based on generic order groups, and the complexity increases

linearly with the number of policy attribute numbers. Therefore, using a resource-constrained device to perform

bilinear computations is not appropriate.

A matrix-based policy updating method that he built using the CP-ABE scheme's fundamental

encryption algorithm. According to the plan, the data owner must deal with a ciphertext update algorithm that

compares a variety of characteristics between the old and the new policy. The policy size affects the

computation and communication costs. The idea of a multi- keyword search over CP-ABE with dynamic

policy was updated. This method updates the policy using the existing policy's encryption data without

selecting a new secret value. After that, the access policy is updated using the Update Keygenalgorithm. The

update key computation, which entails transforming the LSSS matrix and mapping function and comparing

an old and new policy at the data owner side, is expensive if the policy contains a large number of attributes,

even though this scheme is effective for ciphertext updates resulting from policy updates.

B. PROXYRE-ENCRYPTION (PRE)

Proxy re-encryption was initially presented by Mambo and Okamoto [6]. (PRE). The suggested

method uses the idea of a delegator to re-encrypt the ciphertext that the originator originally transmitted. In this

approach, neither the original data nor the decryption keys are revealed to the delegator. This idea was later

adopted by several works [7]–[10]. because it delegated the proxy's expensive cryptographic operations to them.

Some designs split the PRE server to handle solely the re-encryption process, and they employ a cloud server

to communicate and calculate the secret component needed to facilitate user revocation .

The authors of suggested the PRE approach to facilitate key updating. The user and the proxy must

communicate in order for the proxy to get the value of the encrypted ciphertext along with the symmetric key,

and for the proxy to be able to decipher some of the ciphertext. The user must next decode another portion

of ciphertext that the proxy has returned to them. Users still have to deal with two troublesome procedures for

decryption, and the communication cost between the user and the proxy is the major burden if there are several

decryption events. This is true even when some of the processing for decryption is partially outsourced to the

proxy.

we introduced a method called VL- PRE to help make it possible for the policy update to be carried

out in the cloud in a productive and financially advantageous way. The primary technique is an optimization

approach for PRE and re- encryption key creation. Although this method spares data owners from having to

deal with complex cryptographic operations, the ciphertext re-encryption process at the cloud side is still

based on the CP-ABE. Users that need to access the updated ciphertext may have performance issues if there is

a significant amount of re- encryption jobs.

However, while using both proxy re- encryption and ciphertext updating, none of the

aforementioned efforts have concentrated on the practicality perspective, as seen by three shortcomings. First

off, the cost of re-encryption depends on a number of updated policy features that are inappropriate for

mobile devices used by PHR owners, especially when the policy is large and is changed often. Second, no

works have clearly explored the confidence of a delegated system, such as an outsourced server or a

delegated proxy server. Existing works ignore the trust of key updates or any secret components communicated

by the data owner and the delegator.Existing works ignore the trust of key updates or any secret components

communicated by the data owner and the delegator. Finally, there are no methods that take full account of

policy update traceability.

The practical and efficient application of secure outsourced CP-ABE policy updating with complete

traceability is the focus of this article. To facilitate quick policy updates, we mix CP-ABE with a proxy re-

encryption technique in this case. For effective data re-encryption, the suggested system is equipped with

parallel processing techniques. The data owner can adaptably amend the policies kept in the outsourced data

storage under our proposed method. Additionally, CP- cryptographic ABE's details are apparent to users,

enhancing the tool's usability. We provide the policy versioning approach as another key component of our

suggested access control system in order to provide robust accountability of policy modification history.

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 108 | Page

III. Background

The formal CP-ABE concept and associated definitions utilised in our suggested system are described in this

section.

CIPHERTEXTPOLICYATT RIBUTE- BASEDENCRYPTION(CP- ABE)

Essentially, bilinear maps serve as the foundation for the ABE structure. The formal definition of bilinear maps

is described here.

Bilinear Maps

Let e be a bilinear map, G0 G0 G1, and G0 G0 G1 be two multiplicative cyclic groups of prime order p. Let g

serve as a G0 generator. Let H: 0, 1 G0 be the hash function used by the random oracle security model.

The following characteristics apply to the bilinear map e:

Bilinearity: for all u, v ∈G1and a, b ∈Zp,e(u
a
,

v
b
)=e(u,v)

ab

Non-degeneracy:e(g,g)/=1.

Definition 1: Let a {set P1, P2, . .}. , Pnbe given. A col-
:

lectionA2{P1,P2,...,Pn}ismonotoneIf ∀B,Cif

A monotone collection is what an access structure is. Non-empty subsets of the set A of P1, P2, . . . , Pn ,

i.e.

A 2{P1,P2,...,Pn}/

Definition 2: Access Tree T [2]: Assume T is an access structure represented by a tree. With the help of its

offspring and a threshold value, each non-leaf node in the tree represents a threshold gate. If kx is a node's

threshold value and numx is a node's number of children, then 0<kx≤numx.

The threshold gate is an OR gate when kx is 1, and an AND gate when kx is numx. An attribute and a threshold

value, kx 1, characterise each leaf node x in the tree. The Koffin threshold gate is also permitted in T; in this

instance, it has the form kx k, where k is the threshold value chosen for the Koffin gate. T is referred to as an

access control policy, or ACP, in our approach.

The following are the four main algorithms that make up the conventional CP-ABE. Setup. The implicit

security parameter is the only input the setup procedure requires. The master key MK and the public

parameters PK are output.

Generation Key (MK, S). The method requires the master key MK and a list of characteristics S that identify

the key as inputs. A user decryption key

Fig.1.System model of out sourced PHRs sharing.

(UDK) is produced. Technically, bilinear maps provide the foundation for key generation.

Encrypt (PK, M, A). The public parameters PK, the message M, and the access structure A (also known as the

access tree T) over the universe of attributes are all inputs to the encryption method. The algorithm creates a

ciphertext CT after encrypting M.

Decrypt (PK, CT, SK). The method requires three inputs: a user, a ciphertext, and public parameters PK.

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 109 | Page

0

Proposed Approach

The system model and the cryptographic building block of our suggested approach are presented in this section.

a. System Model, part A

According to our concept, PHR owners upload encrypted data files, such as patient profiles and treatment

records, to a cloud server. Users, such as doctors, can access the shared file if they have the necessary skills (a

decryption key that complies with the access control policy).

As illustrated in Figure 1, attribute authorities offer PHR owners and users a collection of attributes in the form

of a user decryption key. Our architecture allows for numerous authorities to provide users the traits. For

instance, a patient could receive keys from several organisations, such as hospitals or an insurance provider. In

a setting where data outsourcing is common.

b. Construction of Systems

The cryptographic methods we offer are based on an extension of the original in our scheme.CP-ABE [1].

There are two encryption components in our system build. Data is first encrypted using symmetric AES

encryption. Second, CP- ABE is used to encrypt the symmetric key. The outsourced server has these two

encrypted results. Here, we define the notations used to describe our cryptographic methods and are

displayed in Table 1.

The five main stages of our concept are System Setup, Key Generation, Encryption, Decryption, and Re-

encryption. A list of the notations utilised in our model is shown in Table.

Phase1: System Setup

The AA or data owner will perform the following six algorithms during this step.

Establish Attribute Authority (k) PKk, SKk, and PKx.k. This algorithm accepts an attribute authority as input.

ID (k). The procedure selects a bilinear group G0 with a generator of prime order p. The next step is to select

two random Zp. The public key is calculated as follows:

PKk=
n
 𝐺 , g,

h
=𝑔β

 ,f = g
1
 e(g,g)

a

β

.
Type equation here.

Note that the secret key SKk is (, g) and that f is just used for delegation. For every attribute that the Ak has

issued, the algorithm additionally publishes the public attribute keys (PKx,k).

2. ENCO- DKoid,kODKoid,k (ODKoid,k, SymKey1oid). In order to encrypt the PHR

owner decryption key ODKoid,k with

AES encryption, the procedure uses

symmetric key 1.

ENCAES (ODKoid,k,SymKey1Oid)

=ENCODKOid,k

Generaterandomsecret

The PHR owner completes this phase by running the subsequent algorithm.

First, Gen R(r1, r2,... rn) R

The algorithm selects a collection of random seeds, rs, at random as input and produces a 256-bit random

number, R, also known as a random string, with its position, Rp. Then it gives back R and Rp.

(2) Add R to a symmetric key that is shared. Substitute R(SymKey1Oid) RSk The proxy server then stores a

secret RSk that is randomly generated.

Second phase: key creation

The AA oversees this stage. The user decryption key is created using the UserKeyGen algorithm (CP-ABE

decryption key). The algorithm's specifics are described in the sections below.UDKuid,k, Suid,k, SKk,

UserKeyGen The KeyGen algorithm accepts a list of characteristics (Suid,k) as input.

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 110 | Page

Policy Versioning

A change in access policies is a crucial problem since it directly links access rules and permission

enforcement. Every ciphertext encrypted using an earlier version of the policy in CP-ABE has to be re-encrypted

with the revised policy. When the update detail is insufficient for precise tracing, all update occurrences are

typically captured in the log file. For instance, in a situation involving the outsourcing of health-care data,

suppose that historical treatment records from the previous two years were encrypted using Policy A and

preserved on the external server. Lineage of policy modifications and their current decryption keys are

absolutely necessary if these medical data are to be inspected.

We offer a policy versioning approach that incorporates the policy linage preservation and policy retrieval

mechanism in order to enable the detailed traceability of policy changes. The directed acyclic graph seen in

Figure 3 can be used to explain the lineage of policy updates.

According to the policy lineage, historical policies were often either independently formed or derived from

earlier policies. All update records are routinely stored in the database, as shown in Table 1, to provide the

specifics of update history.

State 1 Thread of update policy string and query all enc keys, that were encrypted by the updated policy.

Input policy _id, new _policy_string

UPDATE policy _string =new

_Policy_String WHERE pid =ACPpid

List <File>EncSymKey2oid_list =SELECT all file WHERE ACPpid= pid

SEND EncSymKey2oid_list to ReENC function.

Output none.

State 2 Re-encryption queue management function and load balance handling of re- encryption thread based

on file size

Input EncSymKey2oid_list

FOREACH CT AS EncSymKey2oid_list

Active_ thread = FIND re- encryption thread that contains list of summary file size in queue

PUSH CT to active _ thread. queue END FOREACH

Output none.

State 3 File Re-encryption

Input none

VARIABLE queue_ of _reEnc _file WHILE THREAD IS NOT CLOSED

IF queue_ of _reEnc _file is not empty

CT =pull first file from queue_of_reEnc_file

Run ReENC(PKk,rs, RSK, ACP
,
,

EncSymKey2oid,k)

END IF

END WHILE

Users may see the history from DAG and provide the policy version using our developed system to obtain

any past policies. The chosen policy is then taken out of the policy versioning table. The complete

traceability of policy updates is a benefit of this policy versioning record format.

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 111 | Page

FIG3.Policyup dateslineage.

Data owners or auditors may examine modifications to policy structures and related files. If the past cases

are required, any historical rules can be modified to allow file encryption or decryption scenarios. If

some users' keys weren't changed, for instance, they could still need to use their old keys to decrypt files that

were encrypted under earlier regulations.

By using the re-encryption algorithm, any previous policy versions may be recreated with our suggested policy

versioning in order to re-encrypt the target file. In essence, the system auditing and policy

lineage research are served by the suggested versioning approach. To protect

the policy's content's

confidentiality, thepolicyversioningtableise ncryptedwithdataowner’sX.509publickeya

ndthenitcanbestoredintheoutsourcingserver

Performance Analysis

This section divides the performance analysis into two sections: an examination of computational effectiveness

and an examination of experimental results.

Poli cy

ID

V

er.

N

o.

Policy

tree

Sta rt dat e En d dat e File No.

P01 1 Doctor or 01 02 F01,F0

 (Nursean - - 2

 dLevel 07 07

 >11) - -

 20 20

 20 20

P01 2 Doctor or 02 03 F01,F0

 (Nursean - - 2

 dLevel 07 07

 >10) - -

 20 20

 20 20

P01 3 Doctor or 03 04 F01,F0

 (Nursean - - 2,F04

 dLevel > 07 07

 9) - -

 20 20

 20 20

… … … … … …

P01 8 Doctor or 07 - F01,F0

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 112 | Page

 (Nursean - 2,F04

 dLevel 07

 >10) or -

Mr.smith

20

20

P02 1 01 06 F03

 Nurseand - -

 Level >5 07 07

 - -

 20 20

 20 20

P02 2 07 - F03,F0

 Nurseand - 5

 Level >6 07

 -

 20

 20

… … … … … …

Table 1: - provides example of policy versioning table where all

 historical changes of policy structure of all versions

EFFICIENCYANALYSIS

In this part, we contrast our scheme's functionality with that of Li et al[5] .'s and Ying et al[16] .'s schemes. We

define the following notations in order to streamline the representation of computing cost for each scheme.

Letpbetheelementsize intheG1,G2, Zp. G0:ExponentiationoperationingroupG0 G1:ExponentiationingroupG1

Rd = Random decryption over the message or cipher text

Nc = : number of attributes associated with the ciphertext or encrypted key.

Compared to [5,] our plan offers lower communication costs for policy updates. This is so that the proxy server

only receives the random element and the new access control policy, which only accepts attributes that belong

to Zip. The update key generation and matrix mapping element with a new access policy to be sent for

cipher text updating incur communication costs in [5]. Regarding the cost of computation, scheme [5] demands

that the data owner and cloud server conduct ciphertext update and update update key generation,

respectively.

scheme

Policy update

communicati on

USER Proxy

5 3|ZP| 3ZP 3GP+Zp

ours Rd+|Zp| N\A NC|P|

Table 2: Policy communication values

IV. Experimental Analysis

We set up the system simulation using a proxy server as a simulated outsourcing environment to assess the

effectiveness of our suggested method. The Java Pairing- Based Cryptography library and the cp-abe

tools are used to simulate the system

||

(JPBC). The test was run on an Intel(R)

Xeon(R)-CPU E5620 running at 2.40GHz. By comparing the processing times for encryption, decryption, and

re-encryption of our proposed re-encryption process performed by PRE with multi-thread processing and

without PRE, we assess the effectiveness of our scheme. In order to compare scheme [5] with our scheme, we

employed JPBC to mimic the cryptographic design of scheme [5. We modify a variety of policy-related

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 113 | Page

factors in the simulation to compare the computing efficiency of encryption and decryption.simply changing a

few of the policy's defining characteristics. It was put to the test with a file size of 50 KB. Figures 4a and 4b

demonstrate how our technique offers shorter encryption time and decryption than Li et alscheme. .'s Our

method gradually outperforms Li et alscheme, .'s particularly as the number of characteristics rises.

Despite the fact that our technique necessitates two encryption processes, CP- symmetric ABE's key

encryption is employed for the second encryption stage. The encryption and decryption times are not

significantly impacted by the overall processing time due to the relatively modest 128-bit symmetric key size.

This clearly demonstrates the advantages of our suggested cryptography techniques.

FIG 4. Comparison of encryption time b. Comparison of decryption time.

For our system [5], we analyse proxy re- encryption cost in addition to update key generation and ciphertext

update costs to estimate the cost of the policy change. The outcomes of our suggested system, the Li et al.

scheme, and the policy update time (ms) are shown in Figure 5. An increasing quantity of ciphertexts that need

to be re- encrypted is used to estimate processing time. We applied the five qualities to the simulation. we used

the 5-attributes policy to re-encrypt files having 20-KB size in average.

FIG 5. Comparison of re- encryption performance.

As can be seen from Figure 5, our proposed PRE with multithread processing takes less re-

encryption time than the Li et al. scheme in a significant manner KeyGen update and ciphertext update are

included in the cost of updating the policy. In our technique, the proxy merely uses the encrypted symmetric key

to re-encrypt it. This benefit becomes much more apparent when there are several ciphertexts that need to be

re-encrypted. The results of the studies support the notion that our suggested PRE scheme is effective in

assisting PHRs owner to update the policy. Our suggested technique should be able to sustain a large number of

ciphertext re- encryptions brought on by policy modifications in the PHRs outsourcing scenario, as the results

obtained demonstrate its effectiveness. On order to take use of the scalability and other advantages of the cloud,

it is therefore promising to run our re-encryption proxy in VM platforms or Linux containersin the actual

cloud environment.resource resilience, and high availability.

A Sipmple Policy Update System for Sharing Outsourced Personal Health Records

www.ijres.org 114 | Page

V. Conclusion

We have put forth a policy updating approach based on proxy re-encryption and policy outsourcing.

Our plan completely offloads the expense of updating policies to the external server. The re-encryption

method also fully utilises multi-thread processing to allow high scalability and enhance system performance.

We created a GUI tool for CP-ABE policy update implementation for the experiment. Data owners can use our

system to upload data and policies to the external storage in an encrypted fashion. Administrators or data

owners do not need to access the local database to obtain policies or communicate with the external server

during the re-encryption process. Our web-based application allows for policy updates at any time and from

any location.As a result, this offers transparent access control for the management of policy update

management and file storage. We also suggested the policy versioning approach to make it possible to rebuild

past policies effectively for thorough audits. Finally, we showed how well the file re-encryption worked. The

outcomes demonstrated that the multi- thread re-encryption method worked better than the one without one. In

our upcoming work, we will conduct in-depth tests to verify the cloud-based proxy using a bigger amount of

data and access controls in a genuine cloud context.

REFERENCES
[1]. A.SahaiandB.Waters,‘‘Fuzzyidentity- basedencryption,’’inProc.24thAnnu.Int.Co nf.Appl.Cryptograph.Technique(EUROCR

YPT)(Lec-ture Notes in Computer Science). Berlin, Germany: Springer, May 2015,pp. 457–473.

[2]. J.Bethencourt,A.Sahai,andB.Waters,‘‘Ciph ertext-policyattribute-basedencryption,’’ in Proc. IEEE Symp. Secur. Privacy,

Oakland, CA, USA,May 2007, pp. 321–334.
[3]. L.Cheung,J.Cooley,R.Khazan,andC.Newp ort,‘‘Collusion- resistantgroupkeymanagementusingattribut e-

basedencryption,’’Cryptol.ePrintArch.,Tec h.Rep.2007/161.[Online].Available:https:// eprint.iacr.org/2007/161.pdf

[4]. S.Belguith,N.Kaaniche,andG.Russello,‘‘PU-ABE:Lightweightattribute-basedencryptionsupportingaccesspolicyup
dateforcloudassisted IoT,’’ in Proc. IEEE 11th Int. Conf. Cloud Comput. (CLOUD),Jul. 2018, pp. 924–927.

[5]. J. Li, S. Wang, Y. Li, H. Wang, H. Wang, H. Wang, J. Chen, and Z.

You,‘‘Anefficientattribute- basedencryptionschemewithpolicyupdatea ndfileupdate in cloud computing,’’ IEEE Trans. Ind.
Informat., vol. 15, no. 12,pp. 6500–6509, Dec. 2019.

[6]. M. Mambo and E. Okamoto, ‘‘Proxy cryptosystems: Delegation of thepowertodecryptciphertexts,’’IEICETran s.,vol.E80-

A,no.1,pp. 54–63,1997.
[7]. K. Liang, W. Susilo, and J. K. Liu, ‘‘Privacy-preserving ciphertext multi- sharing control for big data storage,’’ IEEE Trans. Inf.

Forensics Security,vol. 10, no.8, pp. 1578–1589,Aug. 2015.

[8]. S.FugkeawandH.Sato,‘‘Embeddinglightwe ightproxyre-encryptionfor efficient attribute revocation in cloud computing,’’
J. High Perform.Comput. Netw., vol. 9,no. 4, pp. 299–309,2016.

[9]. Y.Kawai,‘‘Outsourcingthere- encryptionkeygeneration:Flexibleciphertex t-policy attribute-based proxy re- encryption,’’ in Proc.

Int. Conf.Inf. Secur. Pract. Exper. (ISPEC), Beijing, China, 2015, pp. 301–315.

[10]. X.Liang,Z.Cao,H.Lin,andJ.Shao,‘‘Attribut ebasedproxyre-encryptionwith delegating capabilities,’’ in Proc. 4th Int. Symp. Inf.,

Comput., Com-mun. Secur. (ASIACCS), 2009, pp. 276–286

