
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 10 Issue 7 ǁ July 2022 ǁ PP. 104-106

www.ijres.org 104 | Page

A Comparative Study of Performance Using Sequential Vs

Parallel Programming Applied In Genetic Algorithms

 Eldaief Donelles1, Henriqe A. Richter1, Miquéias F.M. Trennepohl1, Taís T.

Siqueira1, Rogério SM Martins1, Carlos D. Tweneboah2
1
Department of Computer Science, Regional University of the Northwest of the State of Rio Grande do Sul, Rio

Grande do Sul, Brazil
2
Department of Computer Engineering, University of Lagos, Lagos, Nigeria

Abstract
This work presents a comparative study of performance between 3 different implementation methods, which are

applied to the same problem. Initially, a sequential implementation was developed that served as the basis for

the following 2, which made use of the OpenMp and POSIX Thread libraries for parallelization of their

algorithms. An interesting fact to be highlighted, and which may explain the low performance of the Pthread

library is that, when executing the sequential algorithm, it used 100% one core, OpenMP used close to 80% to

each core, whereas Pthread used around 60% of each allocated core.

Keywords: OpenMp, POSIX, nqueens, parallel computing, performance evaluation.

--- ----------

Date of Submission: 24-06-2022 Date of acceptance: 05-07-2022

--- ----------

I. INTRODUCTION

With the increasing dissemination of multi-core computational architectures, which provide the

processing of several tasks in parallel, thus generating significant performance increases, there has been a

massive increase in research aimed at exploiting these resources, due to the fact that in many cases, part of this

available processing power is not used in application development. It is in this context that the optimization of

algorithms is inserted, which makes use of some parallelization methods, among which, we can mention the use

of OpenMP and POSIX Threads libraries.

This work presents a comparative study of performance between 3 different implementation methods,

which are applied to the same problem. Initially, a sequential implementation was developed that served as the

basis for the following 2, which made use of the OpenMp and POSIX Thread libraries for parallelization of their

algorithms.

To carry out the different implementations, the Genetic Algorithm meta-heuristic was chosen, which

seeks a global optimization and is based on the mechanisms of natural selection and genetics. Basically, a

population with n individuals is generated, each individual containing information that generates a particular

solution for the analyzed problem. As long as an individual is not found that contains a satisfactory solution, the

crossing between the individuals is carried out, generating a new population, thus starting a new iteration in

search of the defined solution, according to Linden (2012).

The problem chosen for the parallelization of the algorithms was the nqueens problem, this is an

exponential combinatorial problem that consists of placing nqueens on a chessboard with size nxn so that there

are no collisions, according to Laguna (1994). A collision occurs when two or more queens are positioned in the

same row, column, or diagonal. However, it is not the objective of this work to find the solution to this problem,

but to measure and analyze the performance of the 3 algorithms implemented, considering the same number of

iterations.

II. METHODOLOGY

In the process of studying and developing the topic addressed in this work, theoretical knowledge was

sought on: the nqueens problem, the genetic algorithm meta-heuristic, the two parallel programming methods

(OpenMP and Pthread) and the C++ programming language, in order to acquire understanding enough to

develop the implementations. In the following paragraphs some concepts about threads are presented and the

parallel programming methods used in this work are briefly explained.

Thread is a way for a process to divide itself into several tasks that can run in parallel, making the

system manage each task independently. Unlike processes, which are independent and memory is not shared,

A Comparative Study Of Performance Using Sequential Vs Parallel Programming Applied In ..

www.ijres.org 105 | Page

threads in the same process can use the same instructions and variables. In addition to taking up less memory,

context switching between threads is faster than between processes, according to Edward (2006).

Therefore, threads are important elements in parallel processing, because through their use it is possible

to make a sequential code (executed by only one thread) be divided between several threads and have its

performance improved. To accomplish this division of processing between multiple threads, programmers rely

on the help of libraries that help in the parallelization of the sequential codes developed. Among the libraries

offered, PThread and OpenMP can be highlighted, which are described below.

Pthread are libraries for languages That C++allow generating a set of threads that can run

simultaneously. Implementations made with these libraries are more efficient in multi-processor and/or multi-

core systems where the created threads will be executed in multiple processors/cores, allowing the program

execution time to decrease, gaining more speed through parallel processing, this higher performance can also be

achieved on single-processor systems. YOLINUX (2014).

The Pthread library works with parallel programming with explicit threading, that is, the programmer is

responsible for explicitly creating the multiple threads and defining the work that will be carried out by them. In

addition to creating the threads, the programmer must also manage the synchronization between them, so that

the parallelization of the sequential code does not corrupt the results obtained.

So that the Pthread library can be used in the programming language C++, which was used to develop

the application in this work, it is necessary to import it through the command "#include <pthread.h >". After

performing the import, it is now possible to use the resources and functions provided by the Pthread library,

such as creating a new thread using the "pthread_create" command and synchronizing it using the

"pthread_join" command.

OpenMP is a standard used for parallelizing applications. This standard was developed and is

maintained by the OpenMP Architecture Review Board group, which is formed by companies with large

participation in software and hardware development, such as IBM, Intel, SUN, among others. It arose from the

need that these large companies found to formulate a standard for parallel programming in environments with

shared memory. In these environments, the various existing processing cores make use of the same memory

resource, so there is no need to exchange information between the processing cores, however, it is necessary to

synchronize them so that problems do not occur. access to shared memory, according to CALDAS and SENA

(2008).

Contrary to what some people may think, OpenMP is not a programming language, but a standard that

defines an API for parallel programming in shared memory. It gathers a set of compilation directives, routines

and environment variables. The compilation directives of the OpenMP standard can be defined as different lines

of code, which have the objective of informing the compiler how to parallelize a given piece of code.

In the C++ programming language, which was the language used to develop the application presented

in this work, parallelization through OpenMP occurs through the use of the compilation directive #pragma omp.

This directive must be defined just above the code to be parallelized.

So that the C++ compiler can correctly perform the parallelization of codes marked with the OpenMP

compilation directives, the -fopenmp option must be added to its execution command. In addition, it is necessary

to import the library "omp.h” so that it is possible to use the functions and compilation directives existing in the

OpenMP API.

The parallelization through OpenMP was used in this work through the compilation directive "#pragma

omp parallel for" to parallelize the loop of repetition responsible for the evaluation of the population generated

through the genetic algorithm used.

III. RESULTS AND DISCUSSION

To carry out the tests and collect results for the case study discussed in this work, the following were

used: a board 128×128 (capacity for 128 queens), population with 120 individuals and defined 5000 iterations.

Below is the display of the results obtained.

A Comparative Study Of Performance Using Sequential Vs Parallel Programming Applied In ..

www.ijres.org 106 | Page

By analyzing the data extracted through the tests carried out, it can be seen that by using the OpenMP

library, it was possible to achieve the best performance results for the application. The sequential

implementation had the second best performance and the implementation using the Pthread library had the worst

performance. An interesting fact to be highlighted, and which may explain the low performance of the Pthread

library is that, when executing the sequential algorithm, it used 100%one core, OpenMP used close to 80% to

each core, whereas Pthread used around 60% of each allocated core.

IV. CONCLUSION

When completing the work and analyzing the results of the tests that were carried out, one can see the

superior performance capacity of the algorithm that was implemented using the OpenMP library, although both

parallel algorithms can be further improved in order to optimize them for a certain multi-core architecture, and

perhaps this way they can reach similar results. It can also be seen in the present work, how much the libraries

studied here help in the practice of parallel programming, especially OpenMP, which is responsible for most of

the parallel programming, by simply defining the code snippet that the same want to parallelize that the API

takes care of creating the threads and synchronizing them.

REFERENCES
[1]. Caldas, José A. and SENA, Maria C. Tutorial OpenMp C/C++. Electronic analyses. [Maceió, AL], 2008. Available at: <

http://www.lbd.dcc.ufmg.br/colecoes/erad-rs/2010/006.pdf >. Accessed on: May 15, 2022.

[2]. Edward A. Lee, The Problem with Threads. Electronic analyses. [Berkeley, CA], 2006. Available at: <

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf >. Accessed on: Jun 06, 2022
[3]. Laguna, M. A Guide to Implementing Tabu Search. Investigacion Operativa, 4:159-178,1994.

[4]. Linden, Ricardo. Genetic Algorithms. 3rd ed. modern science,2012.

[5]. Yolinux. Site. POSIX Thread (pthread) libraries. Available at:
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html . Accessed on: Jun 06, 2022.

[6]. Dutta, Sourav, Sheheeda Manakkadu, and Dimitri Kagaris. "Classifying performance bottlenecks in multi-threaded applications." In

2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs, pp. 341-345. IEEE, 2014.
[7]. Manakkadu, Sheheeda, and Sourav Dutta. "Bandwidth based performance optimization of Multi-threaded applications." In 2014

Sixth International Symposium on Parallel Architectures, Algorithms and Programming, pp. 118-122. IEEE, 2014.

[8]. Sri Vidya, B., Harini Sriraman, and P. Rukmani. "Optimized Multi-threading To Balance Energy and Performance Efficiency."
[9]. Sriraman, Harini, and Pattabiraman Venkatasubbu. "Extending Lifetime Reliability Model for Multi-Threaded Architectures."

International Journal of Next-Generation Computing (2018): 51-65.

[10]. Sriraman, Harini, and Pattabiraman Venkatasubbu. "SeRA: Self-Repairing Architecture for Dark Silicon Era." Journal of Circuits,
Systems and Computers 29, no. 04 (2020): 2050053.

[11]. Raj, Supragya, Siddha Prabhu Chodnekar, T. Harish, and Harini Sriraman. "eMDPM: Efficient Multidimensional Pattern Matching
Algorithm for GPU." In Smart Innovations in Communication and Computational Sciences, pp. 97-104. Springer, Singapore, 2019.

