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Abstract 

Alterations or sudden changes within a sequence of temporal observations always create disturbance to data 

analysis. The problem to detect this alterations or changes in any temporal data may allow researchers to 

identify the abnormality in every sequence. The Bayesian method proposed by Basu and Ebrahimi(1991) have 

greatly plays important role to find the Bayes Estimators of the parameters of any sequence and analysis of 

change point problems through Bayesian Technique. In this paper Bayes estimators the Change point and the 

parameters of Burr type III distribution are obtained under Precautionary Loss Function using Inverted Gamma 

Prior as natural conjugate prior. We study Bayesian analysis for change point problem with R programming. 

The result provides accurate change point and posterior means estimation. 

Keywords: Bayesian analysis; change point problem; Burr type III distribution Precautionary Loss Function 

using Inverted Gamma Prior 
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I. 1.1Introduction 

 In this estimation approach, the parameter 𝜃 in the model distributions 𝑝𝜃  𝑥 is treated as a random 

variable with some prior distribution 𝜋 𝜃 . The estimator for 𝜃 is defined as a value depending on the data and 

minimizing the expected loss function or the maximal loss function, where the loss function is denoted 

as 𝑙  𝜃, 𝜃  𝑋  . The usual loss function includes the quadratic loss  𝜃 − 𝜃  𝑋  
2

, the absolute loss  𝜃 − 𝜃  𝑋   

etc. It often turns out that 𝜃  𝑋  can be determined from the posterior distribution of 𝑃 𝜃 𝑋 = 𝑃 𝑋 𝜃  𝑃 𝜃 /
𝑃 𝑋 . 

 In decision theory the loss criterion is specified in order to obtain best estimator. The simplest form of 

loss function is squared error loss function (SELF) which assigns equal magnitudes to both positive and 

negative errors. However this assumption may be inappropriate in most of the estimation problems. Some time 

overestimation leads to many serious consequences. In such situation many authors found the asymmetric loss 

functions, appropriate. There are several loss functions which are used to deal such type of problem. In this 

research work we have considered some of the asymmetric loss function named precautionary loss functions 

(PLF) suggested by Norstorm (1996). Such asymmetric loss functions are also studied by Basu, A.P. and 

Ebrahimi, N. (1991), Goldstein, M. (1998), Perlman, M., &Balug, M. (Eds) (1997), Pandya et. al. (1994), Shah, 

J.B. & Patel, M.N. (2007) and  Singh, U. 

 

1.2   Precautionary Loss  

 Norstrom (1996) introduced an alternative asymmetric precautionary loss function and also presented a 

general class of precautionary loss functions with quadratic loss function as a special case. These loss function 

approach infinitely near the origin to prevent underestimation and thus giving a conservative estimators , 

especially when , low failure rates are being estimated. These estimators are very useful and simple asymmetric 

precautionary loss function is  

L θ, θ =  
 θ −θ 

2

θ 
  (1.2.1) 

 In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the 

true value of parameter is expressed by a prior distribution. The parametric inference is made using the posterior 

distribution which is obtained by incorporating the observed data in to the prior distribution using the Bayes 

theorem, The first theorem of inference. Hence we update the prior distribution in the light of observed data. 

Thus the uncertainty about the parameter prior to the experiment is represented by the prior distribution and the 

same, after the experiment, is represented by the posterior distribution.  
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The various statistical models are considered are as;  

 

1.3  Natural Conjugate Prior (NCP) 

 The various prior distributions are considered for different situations, like non-informative, when no 

information about the parameter is available, Natural Conjugate Prior (NCP), when post and prior distribution of 

parameter belong to same distribution family, etc. Hence the appropriate distribution chosen is Natural 

Conjugate Prior. If there is no inherent reason to prefer one prior probability distribution over another, a 

conjugate prior is sometimes chosen for simplicity. A conjugate prior is defined as a prior distribution belonging 

to some parametric family, for which the resulting posterior distribution also belongs to the same family. This is 

an important property. Since the Bayes estimator, as well as its statistical properties (variance, confidence 

interval, etc.), can all be derived from the posterior distribution. 

 In each case we observe that the statistical analysis based on the sufficient statistic will be effective as 

the one based on the entire data set x . 

 As in frequentist framework, sufficient statistic plays an important role in Bayesian inference in 

constructing a family of prior distributions known as Natural Conjugate Prior (NCP) . The family of prior 

distributions g θ  , θ ϵ Ω , is called a natural conjugate family if the corresponding posterior distribution belongs 

to the same family as g θ  . De Groot (1970) has outlined a simple and elegant method of constructing a 

conjugate prior for a family of distributions f  x θ  which admits a sufficient statistic. 

 One of the fundamental problems in Bayesian analysis is that of the choice of prior distribution g(θ) of 

θ. The non informative and natural conjugate prior distributions are which in practice, Box and Tiao (1973) and 

Jeffrey (1961) provide a thorough discussion on non informative priors.  

 Both De Groot (1970) and Raffia &Schlaifer (1961) provide proof that when a sufficient statistics exist 

a family of conjugate prior distributions exists. 

 The most widely used prior distribution of θ is the inverted Gamma distribution with the parameters „a‟ 

and „b‟ ( > 0 ) with p.d.f. given by  

g θ  =   
ba

Γa
θ−(α+1)e−b

θ  ;  θ > 0 ; (𝑎, 𝑏) > 0,

0                  , otherwise.

    (1.3.1) 

The main reason for general acceptability is the mathematical tractability resulting from the fact that the 

inverted Gamma distribution is conjugate prior of θ Raffia & Schlaifer (1961), Bhattacharya (1967) and others 

have found that the inverted Gamma can also be used for practical reliability applications. 

  In this paper the Bayesian estimation of change point „m‟ and  scale parameter „𝛾‟ of three parameter of 

Generalized Compound Rayleigh Distribution (G.C.R.D.) and also the change point „m‟ and scale parameter ′𝜃′  
of Exponentiated Inverted Weibull distribution is done by using Precautionary Loss Function (PLF) and Natural 

conjugate Prior distribution as Inverted Gamma prior. The sensitivity analysis of Bayesian estimates of change 

point and the parameters of the distributions have been done by using R-programming.    

 

1.4 Burr Type III Distribution 

Burr type III distribution with two parameters was first introduced in the literature of Burr (1942) for 

modelling lifetime data or survival data. It is more flexible and includes a variety of distributions with varying 

degrees of skewness and kurtosis. Burr type III distribution with two parameters  𝛽 and  , which is denoted by 

( , ). Burr type III , has also been applied in areas of statistical modelling such as forestry , meteorology, and 

reliability (Mokhlis (2005)). 

The Probability Density Function and the Cumulative Distribution Function of Burr III  are given by, 

respectively, 

𝑓 𝑥;  𝜃, 𝛽 =  𝜃 𝛽 𝑥− 𝛽+1  1 + 𝑥−𝛽 
− 𝜃+1 

;  𝑥 > 0, 𝜃, 𝛽 > 0(1.4.1)                                                                                     

And the Cumulative distribution function  

𝐹 𝑥;  𝜃, 𝛽 =     1 + 𝑥−𝛽 
−𝜃

        ; 𝑥 > 0, 𝜃 > 0, 𝛽 > 0  (1.4.2)                

Reliability function is 

𝑅 𝑡;  𝜃, 𝛽 =  1 −  1 + 𝑡−𝛽 
−𝜃

;  𝑡 > 0, 𝜃 > 0, 𝛽 > 0(1.4.3)                                            

Note that Burr type XII distribution can be derived from Burr type III distribution by replacing  X with  . The 

usefulness and properties of Burr distribution are discussed by Burr and Cislak (1968) . Abd-Elfattah and 

Alharbey (2012) considered a Bayesian estimation for Burr type III distribution based on double censoring. 

 

 

http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Parametric_family
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1.5 Bayesian Estimation of Change Point in Burr Type III Distribution under Precautionary Loss 

Function (PLF) 

          A sequence of independent life times 𝑥1 ,𝑥2 , …𝑥𝑚 , 𝑥 𝑚+1 , …𝑥𝑛 𝑛 ≥ 3 were observed  from  Burr 

Type III Distribution with parameter 𝜃, 𝛽 .  But it was found that there was a change in the system at some point 

of time „m‟ and it is reflected in the sequence after „𝑥𝑚 ‟ which results change in a sequence as well as parameter 

value 𝜃. The Bayes estimate of 𝜃 and „m‟ are derived for symmetric and asymmetric loss function under 

inverted Gamma prior as natural conjugate prior. 

 

1.5.1 Likelihood, Prior, Posterior and Marginal  

Let 𝑥1,𝑥2, …… , 𝑥𝑛 ,  𝑛 ≥ 3  be a sequence of observed  discrete life times. First let observations 𝑥1,𝑥2 , … . . , 𝑥𝑛  

have come from Burr Type III Distribution with probability density function as                                                                    

𝑓 𝑥, 𝜃, 𝛽 = 𝜃 𝛽𝑥− 𝛽+1  1 + 𝑥−𝛽 
−(𝜃+1)

 𝑥, 𝜃, 𝛽 > 0  1.5.1.1  
Let „m‟ is change point in the observation which breaks the distribution in two sequences as  

 𝑥1, 𝑥2 , ……… . . 𝑥𝑚  &𝑥 𝑚+1 ,𝑥 𝑚+2 , …… . 𝑥𝑛  

The probability density functions of the above sequences are 

𝑓1 𝑥 = 𝜃1𝛽1𝑥
− 𝛽1+1  1 + 𝑥−𝛽1 

− 𝜃1+1 
;  1.5.1.2  

                                                        Where   𝑥1 , … , 𝑥𝑚 > 0; 𝜃1,𝛽1 , > 0 

𝑓2 𝑥 = 𝜃2𝛽2𝑥
− 𝛽2+1  1 + 𝑥−𝛽2 

− 𝜃2+1 
    ;  1.5.1.3  

                                                Where  𝑥 𝑚+1 , 𝑥 𝑚+2 , … , 𝑥𝑛 ;  𝜃2, 𝛽2 > 0 

The likelihood functions of probability density function of the sequence are  

𝐿1 𝑥 𝜃1, 𝛽1 =  𝑓 𝑥𝑗  𝜃1 , 𝛽1 

𝑚

𝑗 =1

 

𝐿1 𝑥 𝜃1, 𝛽1 = 𝜃1
𝑚𝛽1

𝑚  
𝑥𝑗

− 𝛽1+1 

 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

𝑒−𝜃1  log 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

 

𝐿1 𝑥 𝜃1 , 𝛽1,  =  𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  1.5.1.4  

Where 

𝑈1 =  
𝑥𝑗

− 𝛽1+1 

 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

 

𝑇3𝑚 =  log 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

 

𝐿2 𝑥 𝜃2, 𝛽2 =  𝑓 𝑥𝑗  𝜃2, 𝛽2 

𝑛

𝑗 = 𝑚+1 

 

= 𝜃2
 𝑛−𝑚 

𝛽2
 𝑛−𝑚 

 
𝑥𝑗

− 𝛽2+1 

 1 + 𝑥𝑗
−𝛽2 

𝑒−𝜃2  log 1 + 𝑥𝑗
−𝛽2 

𝑚

𝑗 =1

𝑛  

𝑗 = 𝑚+1 
 

𝐿2 𝑥 𝜃2 ,𝛽2 =  𝜃2𝛽2 
 𝑛−𝑚 𝑈2𝑒

−𝜃2(𝑇3𝑛−𝑇3𝑚   ) 1.5.1.5  

where 

𝑈2 =  
𝑥𝑗

− 𝛽2+1 

 1 + 𝑥𝑗
−𝛽2 

𝑛

𝑗 =𝑚+1

 

 and           𝑇3𝑛 − 𝑇3𝑚 =  log 1 + 𝑥𝑗
−𝛽2 𝑛

𝑗 = 𝑚+1  

The joint likelihood function is given by 

𝐿 𝜃1 ,𝜃2 x  ∝ (𝜃1𝛽1)𝑚𝑈1 𝑒
−𝜃1𝑇3𝑚 (𝜃2𝛽2)𝑛−𝑚𝑈2 𝑒

−𝜃2(𝑇3𝑛−𝑇3𝑚   ) 1.5.1.6  

Suppose the marginal prior distribution of 𝜃1 and 𝜃2are natural conjugate prior  

𝜋1 𝜃1 , x =
𝑏1

𝑎1

Γ𝑎1

𝜃1
 𝑎1−1 

𝑒−𝑏1𝜃1 ; 𝑎1 , 𝑏1 > 0, 𝜃1 > 0 1.5.1.7  

𝜋2 𝜃2, x =
𝑏2

𝑎2

Γ𝑎2

𝜃2
 𝑎2−1 

𝑒−𝑏2𝜃2 ;            𝑎2 , 𝑏2 > 0, 𝜃2 > 0 1.5.1.8  

The joint prior distribution of𝜃1 ,𝜃2 and change point „m‟ is      
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𝜋 𝜃1, 𝜃2, 𝑚 ∝
𝑏1

𝑎1

Γ𝑎1

𝑏2
𝑎2

Γ𝑎2

𝜃1
 𝑎1−1 

𝑒−𝑏1𝜃1𝜃2
 𝑎2−1 

𝑒−𝑏2𝜃2 1.5.1.9  

                                                      Where  𝜃1, 𝜃2 > 0  &  𝑚 = 1,2, ……  𝑛 − 1  

The joint posterior density of 𝜃1, 𝜃2 and m say 𝜌 𝜃1 , 𝜃2, 𝑚/𝑥  is obtained by using equations 

 1.5.1.6 & 1.5.1.9  

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 =
L 𝜃1  , 𝜃2 𝑥  π 𝜃1  , 𝜃2, 𝑚 

  L 𝜃1 ,𝜃2 𝑥  π 𝜃1 , 𝜃2, 𝑚 𝑑𝜃1𝑑𝜃2𝜃1𝜃2
𝑚

 1.5.1.10  

𝜌 𝜃1, 𝜃2, 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 
∞

0𝑚 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝜃2

 𝑛−𝑚+𝑎2−1 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑑𝜃2
∞

0

 

Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑥   &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑦 

𝜃1 =
𝑥

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑦

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑥

 𝑇3𝑚 + 𝑏1 
& d𝜃2 =

𝑑𝑦

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝜃1, 𝜃2, 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

  𝑒−𝑥∞

0𝑚
𝑥  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑥

 𝑇3𝑚 +𝑏1 
 e−y∞

0

y 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 

=
𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚 +𝑎1−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 

 
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚  

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

 

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 =
𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚 +𝑎1−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 
 1.5.1.11  

Where  𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 =    
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
𝑚 +𝑎1

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  
𝑛−1
𝑚=1  

The Marginal posterior distribution of change point „m‟ using the equations  1.5.1.6 ,  1.5.1.7 & 1.5.1.8  

𝜌 𝑚|𝑥 =  
L 𝜃1  , 𝜃2 𝑥   π θ1  π θ2 

 L 𝜃1 , 𝜃2 𝑥   π θ1  π θ2 𝑚

 1.5.1.12  

On solving which gives       

𝜌 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 𝜃1
 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2

 𝑛−𝑚 +𝑎2−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

𝑚

 

𝜌 𝑚|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2
 𝑛−𝑚 +𝑎2−1 

 𝑑𝜃2
∞

0

∞

0

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦       &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑧 

𝜃1 =
𝑦

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑦

 𝑇3𝑚 + 𝑏1 
&𝑑𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝑚|𝑥 =
 𝑒−𝑦 𝑦  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 
 e−z∞

0

z 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

∞

0

  𝑒−𝑦∞

0𝑚
𝑦  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 
 e−z∞

0

z 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 

𝜌 𝑚|𝑥 =  

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛 
 1.5.1.13  

The marginal posterior distribution of   𝜃1, using equations  1.5.1.6  and  1.5.1.7  

𝜌 𝜃1|𝑥  =  
L 𝜃1 ,𝜃2 x   π θ1 

 L 𝜃1 ,𝜃2 x   π θ1 dθ1
∞

0

 

On solving which gives  

𝜌 𝜃1|𝑥 =
   𝜃1𝛽1 

𝑚𝑈1𝑒
−𝜃1𝑇3𝑚  𝜃2𝛽2 

𝑛−𝑚𝑈2𝑒
−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1

𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃2

∞

0𝑚

   𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  𝜃2𝛽2 
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1
𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1𝑑𝜃2

∞

0𝑚
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𝜌 𝜃1|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0𝑚

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

  Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦           &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑧 

𝜃1 =
𝑦

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑦

 𝑇3𝑚 + 𝑏1 
&d𝜃2 =

𝑑𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝜃1|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

 
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚  

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

 

𝜌 𝜃1|𝑥 =  
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 
 1.5.1.14  

The marginal posterior distribution of   𝜃2, using the equation  1.5.1.6 & 1.5.1.8  is 

𝜌 𝜃2|𝑥 =  
L 𝜃1 ,𝜃2 x   π θ2 

 L 𝜃1 ,𝜃2 x   π θ2  dθ2
∞

0

 

𝜌 𝜃2|𝑥 =
   𝜃1𝛽1 

𝑚𝑈1𝑒
−𝜃1𝑇3𝑚  𝜃2𝛽2 

𝑛−𝑚𝑈2𝑒
−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1

𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1

∞

0𝑚

   𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  𝜃2𝛽2 
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1
𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1𝑑𝜃2

∞

0𝑚

 

𝜌 𝜃2|𝑥 =
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1 
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1  𝑑𝜃1
∞

0𝑚

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

Assuming  𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦         &𝜃1 =
𝑦

 𝑇3𝑚 +𝑏1 
 

𝜌 𝜃2|𝑥 =
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 
 𝑒−𝑦 𝑦 𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1−1 
𝑑𝑦

 𝑇3𝑚 +𝑏1 
∞

0𝑚

  𝑒−𝑦∞
0𝑚

𝑦 𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1−1 
𝑑𝑦

 𝑇3𝑚 +𝑏1  e−z∞
0

z  𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 
𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 

𝜌 𝜃2|𝑥 =
 

Γ 𝑚 +𝑎1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1 𝑚  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚 ,𝑛 
 (1.5.1.15)         

 

1.5.2 Bayes Estimators under Precautionary Loss Function (PLF)  

The Precautionary loss function is given by 

𝐿3(𝜃 , 𝜃) =        
 𝜃 − 𝜃 

2

𝜃 
 1.5.2.1  

The Bayes estimator of 𝜃 under precautionary Loss Function is obtain by solving the equation; 
𝜕

𝜕𝜃 
𝐸𝜌  𝐿3(𝜃 , 𝜃) = 0 

⇒  𝜃 𝐵𝑃 =   𝐸𝜌 𝜃
2  

1∕2
 1.5.2.2  

The Bayes estimate 𝑚 𝐵𝑃  of m using the marginal posterior from equation (1.5.1.14) is 

𝑚 𝐵𝑃 =   𝐸𝜌 𝑚
2  

1∕2
 

𝑚 𝐵𝑃 =  
 𝑚2 Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 1.5.2.3  

The Bayes estimator 𝜃 1𝐵𝑃  of 𝜃1 under PLF using the marginal posterior from equation (1.5.1.14) is  

𝜃 1𝐵𝑃 =   𝐸𝜌 𝜃1
2  

1∕2
 

𝜃 1𝐵𝑃 =  
 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1+1 𝑑𝜃1

∞

0𝑚  

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

Assuming  𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦      &𝜃1 =
𝑦

 𝑇3𝑚 +𝑏1 
 

Then  
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𝜃 1𝐵𝑃 =  
 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  𝑒−𝑦 𝑦  𝑚 +𝑎1+1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1+1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 

∞

0𝑚  

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

𝜃 1𝐵𝑃 =  
 

Γ 𝑚+𝑎1+2 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1+2 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚  

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

𝜃 1𝐵𝑃 =  
𝜉  𝑎1 + 2 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 1.5.2.4  

The Bayes estimator 𝜃 2𝐵𝑃  of 𝜃2 under PLF using the marginal posterior from equation (1.5.1.15) is  

𝜃 2𝐵𝑃 =   𝐸𝜌 𝜃2
2  

1∕2
 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚   𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2+1 𝑑𝜃2
∞

𝑜

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 
 

1
2 

 

Assuming  𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑦     &𝜃2 =
𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 
 

Then 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1  e−y∞

0

y 𝑛−𝑚 +𝑎2+1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2+1 

𝑑𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝑚  

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 
 

1
2 

 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2+2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2+2 𝑚  

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 
 

1
2 

 

𝜃 2𝐵𝑃 =  
𝜉 𝑎1,  𝑎2 + 2 , 𝑏1 , 𝑏2,𝑚, 𝑛 

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 1.5.2.5  

 

Numerical Comparison for Burr Type III Distribution 

  As in chapter 2 we have generated 20 random observations from Burr Type III distribution with  

parameter𝜃 = 2 and 𝛽 = 0.5. The observed data mean is 𝜇 = 1.8829 and variance 𝜍2 = 23.8886. Let  the change 

in sequence is at 11
th

  observation, so the means and variances of both sequences (x1,x2,…,xm) and (x(m+1), 

x(m+2),…, xn)  are 𝜇1= 0.8277, 𝜇2= 3.2668, 𝜍1
2 = 0.7281 and 𝜍2

2= 51.8509. If the target value of  𝜇1  is unknown, 

its estimating (𝜇 1) is given by the mean of first m sample observation given m=11,  𝜇 = 0.8277. 

 

Sensitivity Analysis of Bayes Estimates 

 In this section we have studied the sensitivity of the Bayes estimates with respect to changes in the 

parameters of prior distribution 𝑎1, 𝑏1 , 𝑎2 and 𝑏2. The means and variances of the prior distribution are used as 

prior information in computing these parameters. Then with these parameter values we have computed the 

Bayes estimates of m, 𝜃1 and 𝜃2 under PLF considering different set of values of  𝑎1 , 𝑏1 and  𝑎2, 𝑏2 .We have 

also considered the different sample sizes n=10(10)30. The Bayes estimates of the change point „m‟ and the 

parameters 𝜃1 and 𝜃2 are given in table-5.3 under PLF. Their respective mean squared errors (M.S.E‟s) are 

calculated by repeating this process 1000 times and presented in same table in small parenthesis under the 

estimated values of parameters. All these values appears to be robust with respect to correct choice of prior 

parameter values and appropriate sample size. All the estimators perform better with sample size n=20 and 

(𝑎1=1.8,1.9)(𝑏1=2.3,2.4),(𝑎2=1.3,1.4) and (𝑏2=1.55, 1.65) .Similarly the Bayes estimates of  PLF are presented 

in table 5.2 appears to be  sensitive with wrong choice of prior parameters and  sample size.  All the calculations 

are done by R- programming. From the below two table we conclude that – 

 The Bayes estimates of the parameters 𝜽𝟏 and 𝜽𝟐 of Burr Type III obtained with loss function 

PLF have more or less same numerical values. The respective M.S.E’s shows that the Bayes estimates 

uniformly smaller for 𝛉 𝟏𝐁𝐏  and  𝛉 𝟐𝐁𝐏 under PLF except of 𝐦 𝐁𝐏. The Bayes estimates of  the parameters 

are  robust uniformly with all values of prior parameters as and all sample size. 
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Table 1.1 

Bayes Estimates of m,𝜽𝟏&𝜽𝟐for Burr Type III and their respective M.S.E.'s Under PLF 
(𝐚𝟏,𝐛𝟏) (𝐚𝟐,𝐛𝟐) N 𝐦 𝐁𝐏 𝛉 𝟏𝐁𝐏 𝛉 𝟐𝐁𝐏 

(1.25,1.50) (1.50,1.60) 10 5.3682 

(16.1368) 

      0.6411 

      (0.3374) 

0.6479 

(0.0119) 

  20 10.2381 

(93.3795) 

       0.5447 

      (0.1218) 

0.8243 

(0.2334) 

  30 15.3143 

(195.4584) 

0.9061 

(0.0290) 

0.6031 

(0.0368) 

(1.50,1.75) (1.70,1.80) 10       5.4855 

       (14.6901) 

0.7828 

(0.0001) 

0.6574 

(0.1592) 

  20 11.2830 

(82.3266) 

0.8828 

(0.2390) 

0.8064 

(0.1734) 

  30 14.9025 

(227.2012) 

0.9301 

(0.0417) 

0.6859 

(0.0451) 

(1.75,2.0) (1.90,2.0) 10 5.4091 

(11.3318) 

0.7551 

(0.1802) 

0.7881 

(0.0065) 

  20 11.6450 

(103.7665) 

0.8941 

(0.0015) 

0.6386 

(0.0409) 

  30 18.1470 

(177.9180) 

0.5218 

(0.0129) 

0.7267 

(0.0825) 

(2.0,2.25) (2.10,2.20) 10 5.4949 

(8.2752) 

0.7759 

(0.4825) 

0.6723 

(0.0002) 

  20 11.1375 

(89.0678) 

      1.0261 

      (0.0665) 

1.1985 

(0.0624) 

  30 17.0109 

(305.2535) 

0.7120 

(0.1028) 

0.8602 

(0.0126) 

(2.25,2.50) (2.30,2.40) 10 5.3972 

(11.5300) 

1.3856 

(.2231) 

0.9654 

(0.0305) 

  20        11.2967 

        (68.8955) 

       0.6913 

       (0.0032) 

0.7222 

(0.2218) 

  30 16.1228 

(285.1916) 

       0.9316 

       (0.0014) 

       0.6857 

       (0.0233) 

(2.50,2.75) (2.50,2.60) 10 

 

      5.5867 

      (14.1249) 

0.8565 

(3.3404) 

       0.9124 

       (0.0291) 

  20        11.3819 

      (82.1639) 

0.7271 

(0.1431) 

0.6055 

(0.0152) 

  30 16.8922 

(96.9484) 

       0.6598 

       (0.0979) 

0.5785 

(0.4466) 

 

References: 
[1]. Abd-Elfattah and Alharbey (2012):Bayesian Estimation for Burr Distribution Type III Based on Trimmed Samples, International 

Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 250393  

[2]. Bain, L. J.,&amp; Engelhardt, M. (1991). “Statistical analysis of reliability and life-testing models”: Theory and methods. New 
York. 

[3]. Basu, A.P. and Ebrahimi, N. (1991): “Bayesian approach to life testing and reliability estimation using asymmetric loss function”. J. 

Statist. Inf. 29, pp 21-31. 
[4]. Bhattacharya, S.K. (1967): “Bayesian approach to life testing and reliability”. J. Amer Statist. Assoc. 62, 48-62. 

[5]. Box, G.E.P. and Tiao, G.C. (1973): “Bayesian Inference in Statistical Analysis”. Addison-Wesley. New York. 

[6]. Broemeling and Tsurumi (1987): “Bayesian analysis of shift point problems”. MIT Press,Cambridge. 
[7]. Burr, I.W. (1942): “Cumulative Frequency Distribution", Annals of Mathematical Statistics, Vol. 13, pp 215-232. 

[8]. Burr and Cislak (1968) “hazard rate, mode and median due to Burr XII and Burr III distributions” papers/vol5n1_2014/ChJS-05-01-

07.pdf 
[9]. Calabria, R., and Pulcini, G. (1994): “An engineering approach to Bayes estimation for the weibull distribution”. Microelectron. 

Reliab, 34, No. 5, pp 789-802. 

[10]. De Groot (1970): “Optimal Statistical Decisions”McGraw hill, New York.  
[11]. Dubey ( 1968): “A compound weibull distribution” Volume 15, Issue 2, pages 179–188, 

[12]. Goldstein, M. (1998): “Bayes Linear Analysis, in Encyclopedia of Statistical Sciences”, update   3, New York: Wiley.     
[13]. Goldstein, M. (1998): “Bayes Linear Analysis, in Encyclopedia of Statistical Sciences”, update   3, New York: Wiley.     

[14]. Jani, P. N., Pandya, M. (1999): “Bayes estimation of shift point in left truncated exponential sequence”. Commun. Statist. Theor. 

Meth.28(11). pp.2623–2639. 
[15]. Jeffreys, H. (1961): “Theory of Probability”. (3 rd edition). Claredon Press, Oxford. 

[16]. Kendall, M.G. and Sturat, A. (1961): “The Advance Theory of Statistics”, 2, Inference and relationship, Halfner, New York. 

[17]. Lindley, D.V. (1965): “Introduction to Probability and Statistics from a Bayesian Viewpoint”, part 1 , : probability , part 2: 
Inference. University Press Cambridge. 

[18]. Mokhlis (2005):Reliability of a Stress-Strength Model with Burr Type III Distributions Communication in   Statistics- Theory and 

Methods 34(7):1643-1657 
[19]. Mostert, J. Roux and A. Bekker, (1999): “Bayes Estimators of the Life Time Parameters Using the Compound Rayleigh model,” 

Journal of South ... 2 ,1999, pp. 

[20]. Norstrom, J.G. (1996) : “The use of precautionary loss functions in risk analysis”. IEEE Trans. Reliab., 45(3), 400-403. 
[21]. Pandey, M., Singh, V.P. and Srivastava, C.P.L. (1994): “A Bayesian estimation of reliability model using the linex loss function”. 

Microelectron. Reliab.,   34, No. 9 , 1519-1523. 

https://www.hindawi.com/journals/isrn/
https://www.hindawi.com/journals/isrn/
https://www.hindawi.com/journals/isrn/
https://www.researchgate.net/journal/Communication-in-Statistics-Theory-and-Methods-1532-415X
https://www.researchgate.net/journal/Communication-in-Statistics-Theory-and-Methods-1532-415X


Bayesian  Estimation of  Change Point Of Burr Type III Distribution under  Precautionary  .. 

www.ijres.org                                                                                                                                          1754 | Page 

[22]. Perlman, M., and Balug, M. (Eds) (1997) : “Bayesian Analysis in econometrics and Statistics”: The Zellner View , Northhampton, 

MA: Edward Elgar. 

[23]. Raiffa, H., and Schlaifer, R. (1961):  “Applied Statistical Decision Theory”. Graduate School of Business Administration, Harvard 
University, Boston. 

[24]. Shah, J.B. and Patel, M.N. (2007) : “Bayesian estimation of shift point in geometric sequence”. Com-munication in Statistics – 

Theory and Methods. 36, 1139-1151. 
[25]. Singh, U.; Gupta, P.K. and Upadhyay, S.K. (2002). “Estimation of exponentiated Weibull shape parameters under Linex loss 

function”, Communication in Statistics – Simulation, 31(4), 523–537. 

[26]. Zacks, S. (1981): “Parametric Statistical Inference: Basic Theory and Modern Approaches”. Pergamon Press, Oxford. 
[27]. Zellner, A. (1986): “Bayes estimation and prediction using asymmetric loss functions”.Jour. Amer. Statist. Assoc., 81, 446-451. 

 


