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Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease 
the training of networks that are substantially deeper than those used previously. We explicitly reformulate the 

layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced 

functions. We provide comprehensive empirical evidence showing that these residual networks are easier to 
optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate 

residual nets with a depth of up to 152 layers—8× deeper than VGG nets but still having lower complexity. An 

ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on 

the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The 

depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely 

deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep 

residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won 

the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO 

segmentation. 
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I. INTRODUCTION 

Deep convolutional neural networks have led to a series of breakthroughs for image classification. 

Deep networks naturally integrate low/mid/highlevel features [1] and classifiers in an end-to-end multilayer 

fashion, and the “levels” of features can be enriched by the number of stacked layers (depth). Recent evidence 

[2] reveals that network depth is of crucial importance, and the leading results [3] on the challenging ImageNet 

dataset all exploit “very deep” models, with a depth of sixteen to thirty. Many other nontrivial visual recognition 

tasks have also greatly benefited from very deep models. 

Driven by the significance of depth, a question arises: Is learning better networks as easy as stacking 

more layers? An obstacle to answering this question was the notorious problem of vanishing/exploding 
gradients [4], which hamper convergence from the beginning. This problem, however, has been largely 

addressed by normalized initialization and intermediate normalization layers, which enable networks with tens 

of layers to start converging for stochastic gradient descent (SGD) with backpropagation [5]. 

When deeper networks are able to start converging, a degradation problem has been exposed: with the 

network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. 

Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model 

leads to higher training error, as reported in [6] and thoroughly verified by our experiments. Fig. 1 shows a 

typical example. 

The degradation (of training accuracy) indicates that not all systems are similarly easy to optimize. Let 

us consider a shallower architecture and its deeper counterpart that adds more layers onto it [7]. There exists a 

solution by construction to the deeper model: the added layers are identity mapping, and the other layers are 
copied from the learned shallower model. The existence of this constructed solution indicates that a deeper 

model should produce no higher training error than its shallower counterpart [8]. But experiments show that our 

current solvers on hand are unable to find solutions that are comparably good or better than the constructed 

solution (or unable to do so in feasible time). 
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Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer    “plain” networks. 
 

In this paper, we address the degradation problem by introducing a deep residual learning framework. 

Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these 

layers fit a residual mapping. We present comprehensive experiments on ImageNet [9] to show the degradation 

problem and evaluate our method. We show that: 1) Our extremely deep residual nets are easy to optimize, but 

the counterpart “plain” nets (that simply stack layers) exhibit higher training error when the depth increases; 2) 

Our deep residual nets can easily enjoy accuracy gains from greatly increased depth, producing results 

substantially better than previous networks [10]. 

Similar phenomena are also shown on the CIFAR-10 set, suggesting that the optimization difficulties 

and the effects of our method are not just akin to a particular dataset. We present successfully trained models on 

this dataset with over 100 layers, and explore models with over 1000 layers. On the ImageNet classification 

dataset [11], we obtain excellent results by extremely deep residual nets. Our 152- layer residual net is the 
deepest network ever presented on ImageNet, while still having lower complexity than VGG nets [12]. Our 

ensemble has 3.57% top-5 error on the ImageNet test set, and won the 1st place in the ILSVRC 2015 

classification competition. The extremely deep representations also have excellent generalization performance 

on other recognition tasks, and lead us to further win the 1st places on: ImageNet detection, ImageNet 

localization, COCO detection, and COCO segmentation in ILSVRC & COCO 2015 competitions. This strong 

evidence shows that the residual learning principle is generic, and we expect that it is applicable in other vision 

and non-vision problems. 

 

II. RELATED WORKS 

In image recognition, VLAD [13] is a representation that encodes by the residual vectors with respect 

to a dictionary, and Fisher Vector can bebformulated as a probabilistic version of VLAD. Bothbof them are 
powerful shallow representations for image retrievalband classification. For vector quantization, encoding 

residual vectors [14] is shown to be more effective than encoding original vectors. In low-level vision and 

computer graphics, for solving Partial Differential Equations (PDEs), the widely used Multigrid method 

reformulates the system as subproblems at multiple scales, where each subproblem is responsible for the 

residual solution between a coarser and a finer scale. An alternative to Multigrid is hierarchical basis 

preconditioning, which relies on variables that represent residual vectors between two scales. It has been shown 

[15] that these solvers converge much faster than standard solvers that are unaware of the residual nature of the 

solutions. These methods suggest that a good reformulation or preconditioning can simplify the optimization. 

Practices and theories that lead to shortcut connections [16] have been studied for a long time. An early 

practice of training multi-layer perceptrons (MLPs) is to add a linear layer connected from the network input to 

the output. In [17], a few intermediate layers are directly connected to auxiliary classifiers for addressing 

vanishing/exploding gradients. The papers of [15, 16] propose methods for centering layer responses, gradients, 
and propagated errors, implemented by shortcut connections. In [18], an “inception” layer is composed of a 

shortcut branch and a few deeper branches. Concurrent with our work, “highway networks” present shortcut 

connections with gating functions [19]. These gates are data-dependent and have parameters, in contrast to our 

identity shortcuts that are parameter-free. When a gated shortcut is “closed” (approaching zero), the layers in 

highway networks represent non-residual functions. On the contrary, our formulation always learns residual 

functions; our identity shortcuts are never closed [20, 21], and all information is always passed through, with 

additional residual functions to be learned. In addition, high-way networks have not demonstrated accuracy 

gains with extremely increased depth (e.g., over 100 layers) [22, 23]. 
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III. PROPOSED METHODOLOGY 

3.1. Residual Learning 

Let us consider H(x) as an underlying mapping to be fit by a few stacked layers (not necessarily the 
entire net), with x denoting the inputs to the first of these layers. If one hypothesizes that multiple nonlinear 

layers can asymptotically approximate complicated functions2, then it is equivalent to hypothesize that they can 

asymptotically approximate the residual functions, i.e., H(x) − x (assuming that the input and output are of the 

same dimensions). So rather than expect stacked layers to approximate H(x), we explicitly let these layers 

approximate a residual function F(x): = H(x) − x. The original function thus becomes F(x) +x. Although both 

forms should be able to asymptotically approximate the desired functions (as hypothesized), the ease of learning 

might be different. 

This reformulation is motivated by the counterintuitive phenomena about the degradation problem (Fig. 

1, left). As we discussed in the introduction, if the added layers can be constructed as identity mappings, a 

deeper model should have training error no greater than its shallower counterpart. The degradation problem 

suggests that the solvers might have difficulties in approximating identity mappings by multiple nonlinear 
layers. With the residual learning reformulation, if identity mappings are optimal, the solvers may simply drive 

the weights of the multiple nonlinear layers toward zero to approach identity mappings. In real cases, it is 

unlikely that identity mappings are optimal, but our reformulation may help to precondition the problem. If the 

optimal function is closer to an identity mapping than to a zero mapping, it should be easier for the solver to find 

the perturbations with reference to an identity mapping, than to learn the function as a new one. We show by 

experiments that the learned residual functions in general have small responses, suggesting that identity 

mappings provide reasonable preconditioning. 

 

3.2 Identity Mapping by Shortcuts 

We adopt residual learning to every few stacked layers. A building block is shown in Fig. 2. Formally, in this 

paper we consider a building block defined as: 

 
                                 y = F(x, {Wi}) + x (1) 

 

Here x and y are the input and output vectors of the layers considered. The function F(x, {Wi}) represents the 

residual mapping to be learned. For the example in Fig. 2 that has two layers, F = W2σ (W1x) in which σ 

denotes ReLU [29] and the biases are omitted for simplifying notations. 

The operation F + x is performed by a shortcut connection and element-wise addition. We adopt the second 

nonlinearity after the addition. 

 

The shortcut connections in Eq. (1) introduce neither extra parameter nor computation complexity. This is not 

only attractive in practice but also important in our comparisons between plain and residual networks. We can 

fairly compare plain/residual networks that simultaneously have the same number of parameters, depth, width, 
and computational cost (except for the negligible element-wise addition). The dimensions of x and F must be 

equal in Eqn.(1). If this is not the case (e.g., when changing the input/output channels), we can perform a linear 

projection Ws by the shortcut connections to match the dimensions: 

 

                                          y = F(x, {Wi}) +Wsx                  (2) 

 

 We can also use a square matrixWs in Eqn.(1). But we will show by experiments that the identity mapping is 

sufficient for addressing the degradation problem and is economical, and thus Ws is only used when matching 

dimensions. The form of the residual function F is flexible. Experiments in this paper involve a function F that 

has two or three layers (Fig. 5), while more layers are possible. But if F has only a single layer, Eqn.(1) is 

similar to a linear layer: y = W1x+x, for which we have not observed advantages. We also note that although the 

above notations are about fully-connected layers for simplicity, they are applicable to convolutional layers. The 
function F(x, {Wi}) can represent multiple convolutional layers. The element-wise addition is performed on two 

feature maps, channel by channel. 

 

3.3. Network Architectures 

We have tested various plain/residual nets, and have observed consistent phenomena. To provide instances for 

discussion, we describe two models for ImageNet as follows.  

 

Plain Network. Our plain baselines are mainly inspired by the philosophy of VGG nets [40]. The convolutional 

layers mostly have 3×3 filters and follow two simple design rules: (i) for the same output feature map size, the 
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layers have the same number of filters; and (ii) if the feature map size is halved, the number of filters is doubled 

so as to preserve the time complexity per layer.  

 
We perform downsampling directly by convolutional layers that have a stride of 2. The network ends with a 

global average pooling layer and a 1000-way fully-connected layer with softmax. The total number of weighted 

layers is 34. It is worth noticing that our model has fewer filters and lower complexity than VGG nets [40] (Fig. 

3, left). Our 34- layer baseline has 3.6 billion FLOPs (multiply-adds), which is only 18% of VGG-19 (19.6 

billion FLOPs). 

 

Residual Network. Based on the above plain network, we insert shortcut connections (Fig. 3, right) which turn 

the network into its counterpart residual version. The identity shortcuts (Eqn.(1)) can be directly used when the 

input and output are of the same dimensions. When the dimensions increase (dotted line shortcuts in Fig. 3), we 

consider two options: (A) The shortcut still performs identity mapping, with extra zero entries padded for 

increasing dimensions. This option introduces no extra parameter; (B) The projection shortcut in Eqn.(2) is used 
to match dimensions (done by 1×1 convolutions). For both options, when the shortcuts go across feature maps 

of two sizes, they are performed with a stride of 2. 

 

3.4 Implementation  

Our implementation for ImageNet follows the practice in [21, 40]. The image is resized with its shorter 

side randomly sampled in [256, 480] for scale augmentation [40]. A 224×224 crop is randomly sampled from an 

image or its horizontal flip, with the per-pixel mean subtracted [21]. The standard color augmentation in [21] is 

used. We adopt batch normalization (BN) [16] right after each convolution and before activation, following 

[16]. We initialize the weights as in [12] and train all plain/residual nets from scratch. We use SGD with a mini-

batch size of 256. The learning rate starts from 0.1 and is divided by 10 when the error plateaus, and the models 

are trained for up to 60×104 iterations. We use a weight decay of 0.0001 and a momentum of 0.9. We do not use 

dropout [13], following the practice in [16]. In testing, for comparison studies we adopt the standard 10-crop 
testing [21]. For best results, we adopt the fully convolutional form as in [40, 12], and average the scores at 

multiple scales (images are resized such that the shorter side is in {224, 256, 384, 480, 640}). 

 

IV.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1. ImageNet Classification 

We evaluate our method on the ImageNet 2012 classification dataset [35] that consists of 1000 classes. 

The models are trained on the 1.28 million training images, and evaluated on the 50k validation images. We also 

obtain a final result on the 100k test images, reported by the test server. We evaluate both top-1 and top-5 error 

rates. 

 

Plain Networks. We first evaluate 18-layer and 34-layer plain nets. The 18-layer plain net is of a similar form. 
The results in Table 1 show that the deeper 34-layer plain net has higher validation error than the shallower 18-

layer plain net. To reveal the reasons, in Fig. 4 (left) we compare their training/validation errors during the 

training procedure. We have observed the degradation problem – the 34-layer plain net has higher training error 

throughout the whole training procedure, even though the solution space of the 18-layer plain network is a 

subspace of that of the 34-layer one. 

 

Table 1. Top-1 error (%, 10-crop testing) on ImageNet validation. 
 Plain ResNet 

18-Layers 27.94 27.88 

34-Layers 28.54 25.03 
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Figure 2. Training on ImageNet 

 

We argue that this optimization difficulty is unlikely to be caused by vanishing gradients. These plain 

networks are trained with BN [16], which ensures forward propagated signals to have non-zero variances. We 

also verify that the backward propagated gradients exhibit healthy norms with BN. So neither forward nor 

backward signals vanish. In fact, the 34-layer plain net is still able to achieve competitive accuracy (Table 3), 

suggesting that the solver works to some extent. We conjecture that the deep plain nets may have exponentially 

low convergence rates, which impact the reducing of the training error3. The reason for such optimization 
difficulties will be studied in the future. 

Residual Networks. Next we evaluate 18-layer and 34- layer residual nets (ResNets). The baseline 

architectures are the same as the above plain nets, expect that a shortcut connection is added to each pair of 3×3 

filters as in Fig. 3 (right). In the first comparison (Table 1 and Fig. 2 right), we use identity mapping for all 

shortcuts and zero-padding for increasing dimensions (option A). So they have no extra parameter compared to 

the plain counterparts. 

We have three major observations from Table 1 and Fig. 2. First, the situation is reversed with residual 

learning– the 34-layer ResNet is better than the 18-layer ResNet (by 2.8%). More importantly, the 34-layer 

ResNet exhibits considerably lower training error and is generalizable to the validation data. This indicates that 

the degradation problem is well addressed in this setting and we manage to obtain accuracy gains from increased 

depth. 

Second, compared to its plain counterpart, the 34-layer ResNet reduces the top-1 error by 3.5% (Table 
1), resulting from the successfully reduced training error (Fig. 2 right vs. left). This comparison verifies the 

effectiveness of residual learning on extremely deep systems. Last, we also note that the 18-layer plain/residual 

nets are comparably accurate (Table 2), but the 18-layer ResNet converges faster. When the net is “not overly 

deep” (18 layers here), the current SGD solver is still able to find good solutions to the plain net. In this case, the 

ResNet eases the optimization by providing faster convergence at the early stage. 

Comparisons with State-of-the-art Methods. In Table 2 we compare with the previous best single-

model results. Our baseline 34-layer ResNets have achieved very competitive accuracy. Our 152-layer ResNet 

has a single-model top-5 validation error of 4.49%. This single-model result outperforms all previous ensemble 

results (Table 3). We combine six models of different depth to form an ensemble (only with two 152-layer ones 

at the time of submitting). This leads to 3.57% top-5 error on the test set (Table 3). This entry won the 1st place 

in ILSVRC 2015. 

 
                  Table 2. Error rates (%) of single-model results on the ImageNet Valodation set 
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Table 3. Error rates (%) of ensembles. 

 
 

V. CONCLUSION 

Our method has good generalization performance on other recognition tasks. Table 7 and 8 show the 

object detection baseline results on PASCAL VOC 2007 and 2012 and COCO. We adopt Faster R-CNN  as the 

detection method. Here we are interested in the improvements of replacing VGG-16 [40] with ResNet-101. The 

detection implementation (see appendix) of using both models is the same, so the gains can only be attributed to 

better networks. Most remarkably, on the challenging COCO dataset we obtain a 6.0% increase in COCO’s 
standard metric, which is a 28% relative improvement. This gain is solely due to the learned representations. 

Based on deep residual nets, we won the 1st places in several tracks in ILSVRC & COCO 2015 competitions: 

ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.  
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