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Abstract 

In many applications, time-domain models of dynamical systems are expressed in terms of differential-algebraic 
equations, which are derived from differential equations (DAEs). The properly stated formulation has recently 

been developed for the linear time-varying context, as a result of certain limitations of models in different forms, 

which allows for explicit descriptions of problem solutions in regular DAEs with arbitrary index, as well as 

precise functional input-output characterizations of the system. In this context, the current paper addresses 

linear differential-algebraic equations using a reduction algorithm. 
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I. Introduction 

Generally speaking, a differential-algebraic equation (DAE) is a mathematical equation that involves 
an unknown function and its derivatives. In its most general form, a (first order) DAE can be expressed as 

When the function f(t,x,x′) is zero, the time is zero, and the number zero is the same as the number zero (1) 

where x=x(t) is the unknown function and F=F(t,u,v) has N components, denoted by xi and Fi, 

i=1,2,...,N, respectively, and xi is the unknown function. Every DAE can be written as a first order DAE, 

regardless of its complexity. It is customary to use the term DAE to refer to the situation in which the highest 

derivative, x′, cannot be solved for using the other terms t and x in the case of (1) being viewed as an algebraic 

relationship between three variables (t and x, x′ ). It is possible that the Jacobian F/v along a particular solution 

of the DAE is singular. Implicit systems, generalised systems, and descriptor systems are all terms used to 

describe systems of equations such as (1). The DAE may be an initial value problem, in which case x is 

specified at the start of the problem, x(t0)=x0, or a boundary value problem, in which case the solution is subject 

to N two-point boundary conditions, g(x(t0),x(tf))=0, and the solution is a boundary value problem. 
The solution method for a DAE will be determined by the structure of the DAE. The semi-explicit 

differential equation (SDE) or ordinary differential equation (ODE) with constraints is a special but important 

class of DAEs of the form (1). 

y′0==f(t,y,z)g(t,y,z), y′0==f(t,y,z) (2) 

which appear on a regular basis in applications The explicit constraints are represented by the values x=(y,z) and 

g(t,y,z)=0. 

 

II. Literature review 

When applied to various engineering and applied science contexts, dynamical system models are 

frequently expressed as differential-algebraic equations (DAE) [1-4]. Because, as will be discussed further 

below, the dynamical behaviour of regular DAEs can be eventually described in terms of an ordinary differential 

equation (ODE), the primary differences between ODEs and DAEs arise from the perspectives of modelling and 
computation. New dynamical phenomena can manifest themselves in non-regular contexts, and DAE models are 

required to capture this singular behaviour; however, the existence of a global state space (ODE) model of the 

system is typically precluded by the presence of these singularities. A good example of this is the widespread 

use of differential algebraic equations in circuit applications today, with modern simulation programmes such as 

SPICE or TITAN setting up circuit equations in differential algebraic form [5-15]. DAEs are also encountered 

frequently in other fields such as mechanics, controls, power system theory, chemical processes, and so on, and 

are sometimes referred to by other names such as descriptor, generalised, constrained, or semi-state systems [1, 

3, 16]. DAEs are also encountered frequently in the field of mathematics. 

In a linear time-varying setting, DAE models are frequently configured in the following manner: 
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The coefficients of the continuous (in t) matrix E(t), F(t), and L(R m) are L(R m), and E(t) is typically a singular 

matrix for all t. There are several known drawbacks to this formulation, particularly when seeking input-output 

functional characterizations and inverse models of the system in adjoint formulations, and also from a numerical 
point of view 17-19, which are highlighted in the following sections: 

As a result, recent attention has been drawn to models in the shape of a sphere. 

 
in which the matrix coefficients A(t) L(R n), D(t) L(R m), and B(t) L(R m) are continuously dependent on the 

time constant t. Because the leading term in (2) is intended to capture the components of x that are actually 

required to be differentiated, it appears in this form in a variety of circuit and control applications, including 

adjoint formulations, and exhibits a number of interesting analytical and numerical characteristics.  

 

III. Differential and algebraic functions 

When applied to engineering and science problems, DAEs can be found in either their general form (1) or their 

special form (2). They can be found in multibody and flexible body mechanics, electrical circuit design, optimal 

control, incompressible fluids, molecular dynamics, chemical kinetics (including quasi steady state and partial 

equilibrium approximations), and chemical process control, to name a few. 

Example - 

A simple example of a DAE is the motion of a pendulum in Cartesian coordinates, which can be represented 
mathematically. 

Pendulum  

Allowing for a length of 1 for the pendulum to be used, the coordinates of the tiny ball of mass 1 at the end of 

the rod should be written as (x1,x2). 

Newton's equations of motion yield the following results: 

x′′1 = x1 x1 x1 x1 

x′′2= x2g, x′′2= x2g, x′′2= x2g, x′′2= x2g, x′′2= x2g, x′′2= x2g (3) 

where g denotes the gravitational force and denotes the Lagrange multiplier. The xi terms represent the force 

that holds the solution to the constraint to the constraint's solution. 

where the condition is expressed as a fixed length for the rod, with the length of the rod being 1. 

A DAE system of the form (2) is obtained by rewriting the two second order equations as four first order ODEs. 
This system contains four differential equations and one algebraic equation. 

As an example of a very simple mechanical system with two bodies, the change of variables x1=sin and X2, 

followed by some algebra results in the well-known ODE for a pendulum, which is denoted by ′′=gsin. 

However, in more general situations, such a straightforward elimination procedure is almost always impossible. 

The authors provide additional examples of real-world DAE systems, such as multibody mechanical systems, an 

electrical circuit, and a prescribed path control problem, which are detailed in Brenan et al (1996). However, it 

should be noted that the constraint in mechanics, for example, the pendulum example, is a physical constraint, 

whereas the constraint in other problems, such as a prescribed path problem, is not a physical constraint but 

rather a part of the performance requirements. 

3.1 DAE and its forms 

The general DAE system (1) can include problems that are not well-defined in a mathematical sense, as well as 

problems that will result in failure for any direct discretization method used in conjunction with the system (see 
the Numerical Solution Section). Most practical higher-index problems can be expressed as a combination of 

more restrictive structures of ODEs coupled with constraints, which is a welcome relief in many cases. The 

Hessenberg forms, which are one of the more important classes of systems, are described in greater detail 

below. 

3.1.1 Hessenberg index number one 

The Jacobian gz is assumed to be nonsingular for all t in the following equation: This is simply a semi-explicit 

index-1 DAE system, similar to the one described above. Semi-explicit index-1 DAEs and implicit ODEs are 

very closely related to one another. After solving for z in the algebraic equation (which can be done in principle 

using the implicit function theorem), substituting z into the differential equation results in the so-called 

underlying ODE in y. (although no uniqueness is guaranteed). However, in practise, for a variety of reasons, this 

procedure is not always recommended for numerical solution in the first place. 

3.1.2 Hessenberg index number two 

The non-singularity of gyfz is assumed to exist for all t. It should be noted that the algebraic variable z is not 

present in the second equation. In this DAE, all algebraic variables take on the role of index-2 variables, and 

there are no index-1 variables. It is given in Ascher et al. that an example arising from modelling incompressible 

fluid flow with discretized Navier-Stokes equations is given (1998). 
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IV. Numerical approaches 

In general, numerical approaches for the solution of DAEs fall into two categories:  

(i) Direct discretizations of the given system and  
(ii) Methods that involve a reformulation (e.g. index reduction) in conjunction with a discretization.  

When it comes to discretization, the desire for as direct a discretization as possible is motivated by the fact that a 

reformulation may be costly, it may require more input from the user, and it may involve more user interaction. 

The reason for the widespread use of reformulation approaches is that, as it turns out, direct discretizations are 

only useful for a small number of Hessenberg DAE systems, primarily index-1, index-2, and index-3 

Hessenberg systems. 

Because many DAEs encountered in practical applications are either index-1 or, if higher-index, can be 

expressed as a simple combination of Hessenberg systems, this is a welcome development. However, even for 

these restricted classes of problems, some worst-case difficulties can arise, and even the most robust direct 

applications of numerical ODE methods do not always work as well as one might expect. This is true even for 

the most robust direct applications of numerical ODE methods. In most cases, when dealing with a DAE with an 
index greater than two, it is preferable to employ one of the index-reduction techniques to solve the problem in a 

lower-index form. 

 

4.1 Differential equations, for example, 

Singularly perturbed ODE systems are those in which the parameter is a small value. When the 

parameter 0 is set to zero, the number is designated as the DAE. The stiffness of the system for small is such 

that it is natural to consider methods for stiff ODEs for the direct discretization of the limit DAE, and for DAEs 

of the form (1) in general, when dealing with DAEs of the form. In particular, ODE methods with stiff decay, 

such as BDF and Radau collocation methods, are useful in this application. 

 

V. Conclusion 

Generally speaking, a differential-algebraic equation (DAE) is a mathematical equation that involves 
an unknown function and its derivatives. When expressed in its most general form, a (first order) DAE is given 

by F(t0,x),x′)=0-to-totf, where x=x(t), the unknown function, and F=F(t,uv) have N components, denoted by x 

and Fi, respectively, where i=1,2,...,N is the number of components of xi and Fi. Every DAE can be written as a 

first order DAE, regardless of its complexity. It is customary to use the term DAE to refer to the situation in 

which the highest derivative, x′, cannot be solved for using the other terms t and x in the case of (1) being 

viewed as an algebraic relationship between three variables (t and x, x′ ). 
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