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Abstract 

In this paper we have obtained Bayes estimatesshifts  in sequence and parameters of the Exponentiated Inverted 

Weibull Distribution.We have  developed a wide-ranging theory to estimate the shifts in the mean of the 

sequence  of purposeful observations of Exponentiated Inverted Weibull Distribution.The Bayes estimates shifts  

in sequence and parameters of the Exponentiated Inverted Weibull Distribution m are derived for 

asymmetricLinex loss function with natural conjugate inverted Gamma  prior distribution. The theoretical 

outputs  arecompared by a numerical study  which demonstrates the performance of the estimator in 

determinate samples. 
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I. Introduction 

Bayesian decision theory provides a unified and intuitively appealing approach to drawing inferences 

from observations and making rational, informed decisions.   Bayesians view statistical inference as a problem 

in belief dynamics, of using evidence about a phenomenon to revise and update knowledge about it. Bayesian 

statistics is a scientifically justifiable way to integrate informed expert judgment with empirical data.  For a 

Bayesian, statistical inference cannot be treated entirely independently of the context of the decisions that will 

be made on the basis of the inferences.  In recent years, Bayesian methods have become increasingly common in 

a variety of disciplines that rely heavily on data. This course introduces students to Bayesian theory and 

methodology, including modern computational methods for Bayesian inference.   

Statistical decision theory deals with situations where decisions have to be made under a state of 

uncertainty, and its goal is to provide a rational frame work for dealing with such situations. The Bayesian 

approach is a particular way of formulating and dealing with statistical decision problems. More specifically, it 

offers a method of formulizing a priori beliefs and of combining them with the available observations, with the 

goal of allowing a rational derivation of optimal decision criteria. Soin decision theory and estimation theory, a 

Bayes estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function 

or minimizes the posterior expected value of a loss function also called posterior expected loss. 

 

1.1 Loss Function 

 Let 𝛿 be an unknown parameter of some distribution f  x 𝛿  and suppose we estimate 𝛿 by some 

statistic𝛿 . Let  L(𝛿, 𝛿) represent the loss incurred when the true value of the parameter is 𝛿 and we are 

estimating 𝛿 by the statistic𝛿 . 
The most widely used symmetric loss function in estimation problems is quadratic loss function given as 

𝐿 𝛿 ,𝛿 = 𝑘(𝛿 − 𝛿)2 where 𝛿   is the estimate of  𝛿,  the loss function is called quadratic weighed loss function if   

k=1, we have  

𝐿 𝛿 ,𝛿 = (𝛿 − 𝛿)2known as squared error loss function (SELF).  

 

Linex Loss: A symmetric loss function assumes that positive and negative error are equally serious. 

However, in some estimation problems such an assumption may be inappropriate. Cannfield (1970) points out 

that the use of symmetric loss function may be inappropriate in the estimation of reliability function. Over 

estimation of reliability function or average lifetime is usually much more serious than under estimation of 

reliability function or mean failure time. 
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Also an underestimate of the failure rate results in more serious consequences than an overestimation of the 

failure rate. This led to the statistician to think about asymmetrical loss function which have been proposed in 

statistical literature. Ferguson (1967), Zellner & Geisel (1968), Aitchision& Dunsmore (1975) and Berger 

(1980) have considered the linear asymmetric loss function. Varian (1975) introduced the following convex loss 

function known as LINEX. (Linear Exponential) Loss Function i.e. given as; 

L ∆ =  bea∆ −  c∆ − b ; a, c ≠ 0, b > 0                                                                         (1.2.1) 

Where ∆ =  θ − θ. It is clear that L(0) = 0 and the minimum occurs when ab=c, therefore , L ∆  can be written 

as  

L ∆ = b ea∆ −  a∆ − 1  , a ≠ 0, b > 0           (1.2.2) 

Where a and b are the parameters of the loss function may be defined as shape and scale respectively. The loss 

function has been considered by Zellner (1986), Basu and Ebrahimi (1991) considered the L ∆  as  

L ∆ = b ea∆ −  a∆ − 1  , a ≠ 0, b > 0   (1.2.3) 

Where,   ∆ =  
θ 

θ
− 1 

 

1.3 Shift in Sequence 

 Physical systems manufacturing the items are often subject to random fluctuations. It may happen that 

at some point of time instability in the sequence of lifetimes is observed. Such observed point is known as 

Change or Shift point inference problem. Such Change or Shift point inference problem is useful in statistical 

quality control to study the Change or Shifting in process mean, Linear time series models, and models related 

to econometrics. The monographs, Broemeling and Tsurmi (1987) on structural changes and survey by Zack 

(1981) are useful references. Bayesian approach may play an important role in the study of such Change or Shift 

point problem and has been often proposed as a valid alternative in classical estimation procedure. A variety of 

Change or Shift point problems have studied in Bayesian frame work by many authors like Zellner (1986), 

Calabria and Pulcini(1994) and Jani and Pandya (1999). 

The various statistical models in this chapter are considered are as  

 

1.4 Prior Distribution: Natural Conjugate Prior (NCP) 

 In frequentist framework, sufficient statistic plays an important role in Bayesian inference in 

constructing a family of prior distributions known as Natural Conjugate Prior (NCP). The family of prior 

distributions   𝜉 α , α ϵ Ω , is called a natural conjugate family if the corresponding posterior distribution 

belongs to the same family as ξ α  . De Groot (1970) has outlined a simple and elegant method of constructing a 

conjugate prior for a family of distributions f  x α  which admits a sufficient statistic. De Groot (1970) and 

Raffia &Schlaifer (1961) provide proof that when a sufficient statistics exist a family of conjugate prior 

distributions exists. 

 The most widely used prior distribution of α is the inverted Gamma distribution with the parameters „a‟ 

and „b‟ (> 0) with p.d.f. given by  

g α  =   
ba

Γa
α−(α+1)e−b

α  ;   α > 0 , (𝑎,𝑏) > 0

0                  , otherwise

   (1.4.1) 

 The main reason for general acceptability is the mathematical tractability resulting from the fact that 

the inverted Gamma distribution is conjugate prior of α Raffia & Schlaifer (1961), Bhattacharya (1967) and 

others have found that the inverted Gamma can also be used for practical reliability applications.  

 

1.5 Exponentiated Inverted Weibull Distribution  

The Inverted Weibull distribution is one of the most popular probability distribution to analyze the life time data 

with some monotone failure rates.Khan et al.(2008) explained the flexibility of the three parameters inverted 

Weibull distribution and its interested properties. Exponentiated (generalized) Inverted Weibull Distribution is a 

generalization to the Inverted Weibull distribution through adding a new shape parameter 𝜆 ∈ ℛ+ by 

exponentiation to distribution function F, the new distribution function Fλ .Al-Hussaini et al.(2010) explained 

that the cumulative distribution function is flexible to monotone and non-monotone failure rates. Mudholkar et 

al(1995) introduced the Exponentiated Weibull Distribution as generalization of the standard Weibull 

Distribution, that applied the new distribution as a suitable model to the bus-motor failure time data. Nasar et 

al.(2003) reviewed the Exponentiated Weibull Distribution with new measures. Nadarajah et al(2005) discussed 

in details the moments of the Exponentiated Weibull distribution. Mudholkar et at(1995) applied the 

Exponentiated Weibull distribution to the flood data with some properties 

The two parameter EIW distribution has the following probability density function 

𝑓 𝑥 = 𝛼𝛽𝑥− 𝛽+1  𝑒−𝛼𝑥  −𝛽 ;       𝑥 > 0,  𝛽 > 0, 𝛼 > 0    (1.5.1)                  

And the distribution function  
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𝐹 𝑥 =  𝑒−𝑥−𝛽
 
𝛼

;                     𝑥 > 0(1.5.2)                                                                               

Also, the reliability function of the EIW distribution with two shape parameters 𝛼 and 𝛽 are given by 

𝑹 𝒕 = 𝟏 −  𝒆−𝒕−𝜷
 
𝜶

;                     𝒕 > 0(1.5.3) 

1.6 Bayesian Estimation of Change point in Exponentiated Inverted Weibull Distribution under Linex 

Loss Function (LLF) 

A sequence of independent lifetimes 𝑥1 ,𝑥2,  … . 𝑥𝑘 ,𝑥 𝑘+1 , ……𝑥𝑙 𝑙 ≥ 3   were observed from 

Exponentiated Inverted Weibull Distribution with parameter  𝛽, 𝛼 .   But it was found that there was a change in 

the system at some point of time „m‟ and it is reflected in the sequence after „𝑥𝑙 ‟ whichresults change in a 

sequence as well as parameter value. The Bayes estimate of 𝛼 and „k‟are derived for symmetric and asymmetric 

loss function under inverted gamma prior as natural conjugate prior. 

 

1.6.1 Likelihood, Prior, Posterior and Marginal   

Let 𝑥1 , ………… . 𝑥𝑙 ,  𝑙 ≥ 3  be a sequence of observed discrete life times. First let observations 𝑥1 , …… . 𝑥𝑙     

have come from Exponentiated Inverted Weibull Distribution with probability density function as 

f x, 𝛽, 𝛼 = 𝛼𝛽𝑥− 𝛽+1  𝑒−𝛼𝑥  −𝛽 ;                    x, 𝛽, 𝛼 > 0  1.6.1.1  
Let „k‟ is change point in the observation which breaks the distribution in two sequences as 

(𝑥1, 𝑥2 , ……… . . 𝑥𝑘)   & ( 𝑥𝑘+1, 𝑥𝑘+2, …………𝑥𝑙) 

The probability density function of the above sequences are 

𝑓1 𝑥 = 𝛼1𝛽1𝑥
− 𝛽1+1  𝑒−𝛼1𝑥 −𝛽1 1.6.1.2  

                            Where𝑥1 , 𝑥2 , ………𝑥𝑘 , 𝛼1, 𝛽1 > 𝑜 

𝑓2 𝑥 = 𝛼2𝛽2𝑥
− 𝛽2+1  𝑒−𝛼2𝑥 −𝛽2 1.6.1.3                                𝑥 𝑘+1 , ……𝑥𝑙 , 𝛼2 , 𝛽2 > 0 

The likelihood functions of probability density function of the sequence are  

𝐿1 𝑥, 𝛼1,𝛽1 =  𝑓(𝑥𝑗   ,

𝑘

𝑗 =1

𝛼1,𝛽1) 

𝐿1 𝑥, 𝛼1,𝛽1 = 𝛼1
𝑘𝛽1

𝑘  𝑥𝑗
− 𝛽1+1 𝑒−𝛼1  𝑥𝑗

−𝛽1𝑘
𝑗=1

𝑘

𝑗 =1

 

𝐿1 𝑥, 𝛼1,𝛽1 =  𝛼1𝛽1 
𝑘𝑈1𝑒

−𝛼1𝑇2𝑘 1.6.1.4  

Where      𝑈1 =  𝑥𝑗
− 𝛽1+1 𝑘

𝑗 =1  

𝑇2𝑘 =  𝑥𝑗
−𝛽1

𝑘

𝑗=1

 

𝐿2 𝑥, 𝛼2,𝛽2 =  𝑓(𝑥𝑗  ,

𝑙

𝑗=𝑘+1

𝛼2,𝛽2) 

𝐿2 𝑥, 𝛼2,𝛽2 = 𝛼2
𝑙−𝑘𝛽2

𝑙−𝑘  𝑥𝑗
− 𝛽2+1 𝑒−𝛼2  𝑥𝑗

−𝛽2𝑘
𝑗=1

𝑙

𝑗=𝑘+1

 

𝐿2 𝑥, 𝛼2,𝛽2 =  𝛼2𝛽2 
𝑙−𝑘𝑈2𝑒

−𝛼2( 𝑇2𝑙−𝑇2𝑘) 1.6.1.5  

Where      𝑈2 =  𝑥𝑗
− 𝛽2+1 𝑙

𝑗 =𝑘+1  

𝑇2𝑙 − 𝑇2𝑘 =  𝑥𝑗
−𝛽2

𝑙

𝑗 =𝑘+1

 

And the joint Likelihood function is given by  

L 𝛼1 , 𝛼2|𝑥 ∝  𝛼1𝛽1 
𝑘𝑈1𝑒

−𝛼1𝑇2𝑘 𝛼2𝛽2 
𝑙−𝑘𝑈2𝑒

−𝛼2( 𝑇2𝑙−𝑇2𝑘) 1.6.1.6  

Suppose the marginal prior distributions 0f  𝛼1 , 𝛼2 are natural conjugate prior                                            

𝜋1 𝛼1, x =
𝑏1

𝑎1

Γ𝑎1

𝛼1
 𝑎1−1 

𝑒−𝑏1𝛼1 ;             𝑎1,𝑏1 > 0, 𝛼1 > 0 1.6.1.7 𝜋2 𝛼2, x =
𝑏2

𝑎2

Γ𝑎2

𝛼2
 𝑎2−1 

𝑒−𝑏2𝛼2  ;      𝑎2, 𝑏2

> 0, 𝛼2 > 0 1.6.1.8  

The joint prior distribution of 𝛼1 , 𝛼2 and change point „k‟ is   
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𝜋 𝛼1, 𝛼2, 𝑘 ∝
𝑏1

𝑎1

Γ𝑎1

𝑏2
𝑎2

Γ𝑎2

𝛼1
 𝑎1−1 

𝑒−𝑏1𝛼1𝛼2
 𝑎2−1 

𝑒−𝑏2𝛼2 1.6.1.9  

                                                      where 𝛼1 , 𝛼2 > 0  &  𝑘 = 1,2, ……  𝑙 − 1  

The joint posterior density of 𝛼1, 𝛼2 and k say 𝜋 𝛼1 , 𝛼2, 𝑘/𝑥  is obtained by using equations 

 1.6.1.6 & 1.6.1.9  

𝜌 𝛼1 , 𝛼2, 𝑘|𝑥 =
L 𝛼1, 𝛼2 𝑥  π 𝛼1 , 𝛼2, 𝑘 

  L 𝛼1 , 𝛼2 𝑥  π 𝛼1, 𝛼2, 𝑘 𝑑𝛼1 , 𝑑𝛼2𝛼1 ,𝛼2
𝑘

 1.6.1.10 𝜌 𝛼1, 𝛼2, 𝑘|𝑥 

=
𝛼1

 𝑘+𝑎1−1 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼2
 𝑙−𝑘+𝑎2−1 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 

  𝑒−𝛼1 𝑇2𝑘+𝑏1 
∞

0𝑚 𝛼1
 𝑘+𝑎1−1  𝑑𝛼1  𝛼2

 𝑙−𝑘+𝑎2−1 𝑒−𝛼2 𝑇2𝑘−𝑇2𝑘+𝑏2  𝑑𝛼2
∞

0

 

Assuming    𝛼1 𝑇2𝑘 + 𝑏1 = 𝑥   &𝛼2 𝑇2𝑙 − 𝑇2𝑘 + 𝑏2 = 𝑦 

𝛼1 =
𝑥

 𝑇2𝑘 + 𝑏1 
&𝛼2 =

𝑦

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝑑𝛼1 =
𝑑𝑥

 𝑇2𝑘 + 𝑏1 
& d𝛼2 =

𝑑𝑦

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝜌 𝛼1, 𝛼2, 𝑘|𝑥 =
𝛼1

 𝑘+𝑎1−1 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼2
 𝑙−𝑘+𝑎2−1 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 

  𝑒−𝑥∞

0𝑘
𝑥 𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑥

 𝑇2𝑘+𝑏1 
 e−y∞

0

y 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑦

 𝑇2𝑙−𝑇2𝑘+𝑏2 

𝜌 𝛼1, 𝛼2, 𝑘|𝑥 

=
𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝛼+𝑎1−1 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2
 𝑙−𝑘+𝑎2−1 

 
Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘  

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

 

𝜌 𝛼1, 𝛼2 , 𝑚|𝑥 =
𝑒−𝛼1 𝑇2𝑘+𝑏1 𝜃1

 𝑘+𝑎1−1 
𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘, 𝑙 
 1.6.1.11  

Where  𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘, 𝑙 =    
Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
𝑘+𝑎1

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2  
𝑙−1
𝑘=1  

The Marginal posterior distribution of change point „m‟ using the equations  1.6.1.6 ,  1.6.1.7 & 1.6.1.8  

𝜌 𝑘|𝑥 =  
L 𝛼1 , 𝛼2 𝑥   π α1  π α2 

 L 𝛼1 , 𝛼2 𝑥   π α1  π α2 𝑚

 1.6.1.12  

On solving which gives       

𝜌 𝑘|𝑥 =
𝛼1

 𝑘+𝑎1−1 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼2
 𝑙−𝑘+𝑎2−1 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 

 𝛼1
 𝑘+𝑎1−1 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼2

 𝑙−𝑘+𝑎2−1 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 

𝑘

 

𝜌 𝑘|𝑥 =
 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝑘+𝑎1−1  𝑑𝛼1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2
 𝑙−𝑘+𝑎2−1 

 𝑑𝛼2
∞

0

∞

0

  𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1
 𝑘+𝑎1−1  𝑑𝛼1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1  𝑑𝛼2
∞

0

∞

0𝑘

 

Assuming    𝛼1 𝑇2𝛼 + 𝑏1 = 𝑦       &𝛼2 𝑇2𝑙 − 𝑇2𝑘 + 𝑏2 = 𝑧 

𝛼1 =
𝑦

 𝑇2𝑘 + 𝑏1 
&𝛼2 =

𝑧

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝑑𝛼1 =
𝑑𝑦

 𝑇2𝑘 + 𝑏1 
&𝑑𝛼2 =

𝑧

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝜌 𝑘|𝑥 =
 𝑒−𝑦 𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1 
 e−z∞

0

z 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑧

 𝑇2𝑙−𝑇2𝑘+𝑏2 

∞

0

  𝑒−𝑦∞

0𝑘
𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1 
 e−z∞

0

z 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑧

 𝑇2𝑙−𝑇2𝑘+𝑏2 

 

𝜌 𝑘|𝑥 =

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

 
Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘  

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

 

𝜌 𝑘|𝑥 =  

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘, 𝑙 
 1.6.1.13  

The marginal posterior distribution of 𝛼1, using equations 1.6.1.6  and  1.6.1.7  

𝜌 𝛼1|𝑥 =  
L 𝛼1 ,𝛼2 x   π α1 

 L 𝛼1 ,𝛼2 x   π α1 dα1
∞

0

 

𝜌 𝛼1|𝑥 =
  L 𝛼1 ,𝛼2 x   π α1  π α2  dα2

∞

0𝑘

  L 𝛼1 ,𝛼2 x   π α1  π α2  dα1 dα2
∞

0𝑘
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On solving which gives  

𝜌 𝛼1|𝑥 =
 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝑘+𝑎1−1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2
 𝑙−𝑘+𝑎2−1  𝑑𝛼2

∞

0𝑘

  𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1
 𝑘+𝑎1−1  𝑑𝛼1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1  𝑑𝛼2
∞

0

∞

0𝑘

 

Assuming    𝛼1 𝑇2𝑘 + 𝑏1 = 𝑦           &𝛼2 𝑇2𝑙 − 𝑇2𝑘 + 𝑏2 = 𝑧 

𝛼1 =
𝑦

 𝑇2𝑘 + 𝑏1 
&𝛼2 =

𝑧

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝑑𝛼1 =
𝑑𝑦

 𝑇2𝑘 + 𝑏1 
&d𝛼2 =

𝑑𝑧

𝑇2𝑙 − 𝑇2𝑘 + 𝑏2

 

𝜌 𝛼1|𝑥 =
 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝑘+𝑎1−1  e−z∞

0

z 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑧

 𝑇2𝑙−𝑇2𝑘+𝑏2 𝑘

  𝑒−𝑦∞

0𝑘
𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1 
 e−z∞

0

z 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑧

 𝑇2𝑙−𝑇2𝑘+𝑏2 

 

𝜌 𝛼1|𝑥 =
 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝑘+𝑎1−1 Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 𝑚

 
Γ 𝑚+𝑎1 

 𝑇2𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚  

Γ 𝑛−𝑚+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

 

𝜌 𝛼1|𝑥 =  
 𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1

 𝑘+𝑎1−1 Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 𝑘

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘, 𝑙 
 1.6.1.14  

The marginal posterior distribution of 𝛼2, using the equation  1.6.1.6 & 1.6.1.8  is 

𝜌 𝛼2|𝑥 =  
L 𝛼1 ,𝛼2 x   π α2 

 L 𝛼1 ,𝛼2 x   π α2  dα2
∞

0

 

𝜌 𝛼2|𝑥 =
  L 𝛼1 ,𝛼2 x   π α1  π α2  dα1

∞

0𝑘

  L 𝛼1 ,𝛼2 x   π α1  π α2  dα1 dα2
∞

0𝑘

 

𝜌 𝛼2|𝑥 =
 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1  𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1
 𝑘+𝑎1−1  𝑑𝛼1

∞

0𝑘

  𝑒−𝛼1 𝑇2𝑘+𝑏1 𝛼1
 𝑘+𝑎1−1  𝑑𝛼1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝜃2

 𝑙−𝑘+𝑎2−1  𝑑𝛼2
∞

0

∞

0𝑘

 

Assuming  𝛼1 𝑇2𝑘 + 𝑏1 = 𝑦         &𝛼1 =
𝑦

 𝑇2𝑘+𝑏1 
 

𝜌 𝛼2|𝑥 =
 𝑒−𝜃2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝜃2

 𝑙−𝑘+𝑎2−1 
 𝑒−𝑦 𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1 

∞

0𝑘

  𝑒−𝑦∞

0𝑘
𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1 
 e−z∞

0

z 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2−1 

𝑑𝑧

 𝑇2𝑙−𝑇2𝑘+𝑏2 

 

𝜌 𝛼2|𝑥 =
 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1 

 
Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘  

Γ 𝑙−𝑘+𝑎2 

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

 

𝜌 𝛼2|𝑥 =
 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘, 𝑙 
 1.6.1.15  

1.6.2 Bayes Estimators under Linex Loss Function (LLF)            

The Bayes estimate 𝑘 𝐵𝐿 of m under LLF using marginal posterior of equation (1.6.1.12), is given as   

𝑘 𝐵𝐿 = −
1

𝑘1
log  

 𝑒−𝑘1𝑘 Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑘 𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝛼2

 𝑙−𝑘+𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑘 ,𝑙 
   (1.6.2.1) 

The Bayes estimate of 𝑘 1𝐵𝐿of 𝑘1 using marginal posterior of equation (1.6.1.13) under LLF equation (1.6.2.1) is 

given by  

𝛼 1𝐵𝐿 =  −
1

𝑘1

log 𝐸𝜌  exp −𝑘1𝛼1   

𝛼 1𝐵𝐿 = −
1

𝑘1

log  
 

Γ(𝑙−𝑘+𝑎2)

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2  𝑒−𝛼1 𝑇2𝑘+𝑏1+𝑘1 𝛼1
 𝑘+𝑎1−1 𝑑𝛼1

∞

0𝑘

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑘. 𝑙 
  

Assuming  𝛼1 𝑇2𝑘 + 𝑏1 + 𝑘1 = 𝑦       &𝛼1 =
𝑦

 𝑇2𝑚 +𝑏1+𝑘1 
 

𝛼 1𝐵𝐿 = −
1

𝑘1

log  
 

Γ(𝑙−𝑘+𝑎2)

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2  𝑒−𝑦 𝑦  𝑘+𝑎1−1 

 𝑇2𝑘+𝑏1+𝑘1 
 𝑘+𝑎1−1 

𝑑𝑦

 𝑇2𝑘+𝑏1+𝑘1 

∞

0𝑘

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑘. 𝑙 
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𝛼 1𝐵𝐿 = −
1

𝑘1

log  
 

Γ(𝑙−𝑘+𝑎2)

 𝑇2𝑙−𝑇2𝑘+𝑏2  𝑙−𝑘+𝑎2 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1+𝑘1  𝑘+𝑎1 𝑘

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑘, 𝑙 
  

𝛼 1𝐵𝐿 = −
1

𝑘1
log  

𝜉 𝑎1 ,𝑎2 , 𝑏1+𝑘1 ,𝑏2 ,𝑘 ,𝑙 

𝜉 𝑎1 ,𝑎2 ,𝑏1 ,𝑏2 ,𝑘 ,𝑙 
  (1.6.2.2) 

      The Bayes estimate of 𝛼 2𝐵𝐿of 𝛼2 using marginal posterior of equation (1.6.1.16) under LLF equation 

(1.6.2.1) is given by  

𝛼 2𝐵𝐿 =  −
1

𝑘2

log 𝐸𝜌  exp −𝑘2𝛼2   

𝛼 2𝐵𝐿 = −
1

𝑘2

log  
 𝑒−𝑘2𝛼2 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 𝑒

−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2 𝜃2
 𝑙−𝑘+𝑎2−1 

𝑚

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑘, 𝑙 
  

𝛼 2𝐵𝐿 = −
1

𝑘2

log  
 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1  𝑒−𝛼2 𝑇2𝑙−𝑇2𝑘+𝑏2+𝑘2 𝜃2

 𝑘−𝑙+𝑎2−1 𝑑𝜃2
∞

0𝑘

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑘, 𝑙 
  

Assuming  𝛼2 𝑇2𝑙 − 𝑇2𝑘 + 𝑏2 + 𝑘2 = 𝑦    &𝛼2 =
𝑦

 𝑇2𝑙−𝑇2𝑘+𝑏2+𝑘2 
 

Then 

𝛼 2𝐵𝐿 = −
1

𝑘2

log  
 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1  e−y∞

0

y 𝑙−𝑘+𝑎2−1 

 𝑇2𝑙−𝑇2𝑘+𝑏2 +𝑘2  𝑙−𝑘+𝑎2−1 

𝑑𝑦

 𝑇2𝑙−𝑇2𝑘+𝑏2 𝑘

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑘, 𝑙 
  

𝛼 2𝐵𝐿 = −
1

𝑘2

log  
 

Γ 𝑘+𝑎1 

 𝑇2𝑘+𝑏1 
 𝑘+𝑎1 

Γ(𝑙−𝑘+𝑎2)

 𝑇2𝑙−𝑇2𝑘+𝑏2 +𝑘2 
 𝑙−𝑘+𝑎2 𝑘

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑘, 𝑙 
  

𝛼 2𝐵𝐿 = −
1

𝑘2
log  

𝜉 𝑎1 ,𝑎2 ,𝑏1 , 𝑏2+𝑘2 ,𝑘 ,𝑙 

𝜉 𝑎1 ,𝑎2 ,𝑏1 ,𝑏2 ,𝑘 ,𝑙 
  (1.6.2.4) 

 

Numerical Comparison for Exponentiated Inverted Weibull Sequences 

In this paper we have generated 20 random observations from Exponentiated Inverted Weibull 

distribution with scale parameter 𝛼 = 2. and 𝛽 = 0.5. The observed data mean is 𝜇 = 1.5616 and variance 𝜍2 = 

0.6812. Let  the change in sequence is at 11
th

  observation, so the means and variances of both sequences 

(x1,x2,…,xk) and (x(k+1), x(k+2),…, xl)  are 𝜇1= 1.5491, 𝜇2= 1.5769, 𝜍1
2 = 1.0197 and 𝜍2

2= 0.3427. If the target 

value of  𝜇1  is unknown, its estimating (𝜇 1) is given by the mean of first k sample observation given k=13,  𝜇 = 

1.5491. 

 

Sensitivity Analysis of Bayes Estimates 

 In this section we have studied the sensitivity of the Bayes estimates with respect to changes in the 

parameters of prior distribution 𝑎1, 𝑏1 , 𝑎2 and 𝑏2. The means and variances of the prior distribution are used as 

prior information in computing these parameters. Then with these parameter values we have computed the 

Bayes estimates of k, 𝛼1 and 𝛼2 under LLF considering different set of values of  𝑎1 , 𝑏1 and  𝑎2 , 𝑏2 .We have 

also considered the other values like parameter of loss function 𝛼1=2 and different sample sizes n=10(10)30. 

The Bayes estimates of the change point „k‟ and the parameters 𝛼1 and 𝛼2 are given in table-1 under LLF.. Their 

respective mean squared errors (M.S.E‟s) are calculated by repeating this process 1000 times and presented in 

same table in small parenthesis under the estimated values of parameters. All these values appears to be robust 

with respect to correct choice of prior parameter values and appropriate sample size. All the estimators perform 

better with sample size n=20.Similarly the Bayes estimates of LLF are presented in table 1 appears to be 

sensitive with wrong choice of prior parameters and sample size. All the calculations are done by R- 

programming. From the below two table we conclude that– 

  

The Bayes estimates of the parameters 𝜶𝟏 and 𝜶𝟐 of EIW obtained with loss function LLF have more or 

less same numerical values. The respective M.S.E’s shows that the Bayes estimates uniformly smaller for 

𝜶 𝟏𝑩𝑳  and  𝜶 𝟐𝑩𝑳 under LLF except of  𝒌 𝑩𝑳. The Bayes estimates of the parameters are robust uniformly 

for all values of prior parameters and all sample size. 
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Table 1.1 

Bayes Estimates of m,𝜶𝟏&𝜶𝟐for  EIW sequences and their respective M.S.E.'s Under  LLF 

 
(𝐚𝟏,𝐛𝟏) (𝐚𝟐,𝐛𝟐) n 𝒌 𝐁𝐋 𝜶 𝟏𝐁𝐋 𝜶 𝟐𝐁𝐋 

(1.25,1.50) (1.50,1.60) 10 7.8567 

(18.5629) 

2.4152 

(0.0423) 

5.6399 

(0.0533) 

  20 17.4757 

(18.8058) 

     3.6054 

     (0.0723) 

2.8843 

(0.1317) 

  30 27.2234 

(18.5613) 

1.8391 

(0.1517) 

2.3582 

(0.0604) 

(1.50,1.75) (1.70,1.80) 10       8.0800 

      (20.3466) 

2.8315 

(0.0675) 

1.9187 

(0.0699) 

  20 17.2980 

(17.0093) 

1.8214 

(0.2639) 

3.2813 

(0.0396) 

  30 27.0351 

(17.9915) 

1.3656 

(0.0655) 

1.8160 

(0.0762) 

(1.75,2.0) (1.90,2.0) 10 7.9206 

(19.0464) 

3.1722 

(0.0917) 

1.6689 

(0.0473) 

  20 17.5442 

(18.6643) 

2.0446 

(0.2046) 

2.2066 

(0.5266) 

  30 27.5183 

(18.0671) 

2.9711 

(0.1095) 

1.2995 

(0.0156) 

(2.0,2.25) (2.10,2.20) 10 7.7801 

(18.4644) 

2.2183 

(0.0370) 

         2.0520 

         (0.0542) 

  20 17.7479 

(18.1044) 

2.7108 

(0.0451) 

2.8612 

(0.1935) 

  30 27.5316 

(20.1331) 

2.6096 

(0.0052) 

1.9407 

(0.3302) 

(2.25,2.50) (2.30,2.40) 10 8.1371 

(18.0578) 

2.4303 

(0.0003) 

1.5661 

(0.1830) 

  20      17.7958 

    (123.4386) 

      2.1493 

      (0.0910) 

2.4853 

(0.0192) 

  30 27.6648 

    (328.5269) 

      1.8557 

      (0.0049) 

         1.5343 

         (0.0053) 

(2.50,2.75) (2.50,2.60) 10 

 

       7.9146 

      (17.3859) 

1.7218 

(0.2007) 

          2.1832 

          (0.0009) 

  20        18.1318 

    (124.6488) 

2.0797 

(0.0874) 

1.8301 

(0.1783) 

  30 27.7977 

    (322.3771) 

     2.5156 

     (0.1225) 

1.9650 

(0.0043) 

 

References 
[1]. Aitchison, J. and Dunsmore, I.R. (1975): Statistical Prediction Analysis, Cambridge Universiry Press, London. 

[2]. AL-Hussaini,E.K.,Ahmad,A.A(2010): Exponentiated Distributions- https://books.google.co.in/books,  isbn=9462390797 
[3]. Basu, A.P. and Ebrahimi, N. (1991):Bayesian Approach to Life Testing and Reliability Estimation Using Asymmetric Loss 

Function. Journal of Statistical Planning and Inference 

[4]. Berger, J. O. (1980): “Statistical Decison Theory and Bayesian Analysis”, Second Edition, Springer-Verlag, New York. 
[5]. Bhattacharya, S.K. (1967): “Bayesian approach to life testing and reliability”. J. Amer Statist. Assoc. 62, 48-62. 

[6]. Broemeling and Tsurumi (1987): “Bayesian analysis of shift point problems”. MIT Press,Cambridge. 

[7]. Cannfield, R.V. (1970): “A Bayesian Approach to Reliability estimation Using a Loss function”, IEEE Tans. Reliab., R-19, 13-16. 
[8]. Calabria, R., and Pulcini, G. (1994): “An engineering approach to Bayes estimation for the weibull distribution”. Microelectron. 

Reliab, 34, No. 5, pp 789-802. 

[9]. De Groot (1970): “Optimal Statistical Decisions”McGraw hill, New York.  
[10]. Ferguson, T.S. (1967): “Mathematical Statistics:” A Decision Theoretic Approach. New York: Academic Press. 

[11]. Jani, P. N., Pandya, M. (1999): “Bayes estimation of shift point in left truncated exponential sequence”. Commun. Statist. Theor. 

Meth.28(11). pp.2623–2639. 
[12]. Mudholkar, G.S., Srivastava, D.K. and Freimer, M. (1995):“The ExponentiatedWeibull Family; A Re-Analysis ofthe Bus Motor 

Failure Data", Techno., Vol. 37, pp 436-445. 

[13].  Nadarajah et al. (2005): “introduced five kind of EP distributions and studied some of their properties”. 
https://www.researchgate.net/.../243044419 

[14]. Nasar.et al (2003): “On the exponentiated Weibull distribution, communications in Statistics”, theory and method, 32,1311-1333    

[15]. Raiffa, H., and Schlaifer, R. (1961):  “Applied Statistical Decision Theory”. Graduate School of Business Administration, Harvard 
University, Boston. 

[16]. Varian, H.R. (1975): A Bayesian Approach to Real Estate Assessment. North Holland, Amsterdam, 195-208. 

[17]. Zacks, S. (1981): “Parametric Statistical Inference: Basic Theory and Modern Approaches”. Pergamon Press, Oxford. 

[18]. Zellner, A. (1986): “Bayes estimation and prediction using asymmetric loss functions”.Jour. Amer. Statist. Assoc., 81, 446-451. 

[19]. Zellner, A. and Geisel, M.S. (1968): “Sensitivity of Control to Uncertainty and Form of the Criterion function, In the Future of 

Statistics”, Ed. Donal G. Watts. New York: Academic Press.   

https://www.researchgate.net/.../243044419

