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Abstract 

Healthcare emergency incidents are investable and often have long-term and short-term impacts on the well-

being of an individual in the emergency care facility calling for the need to ensure that the emergency planning 

and response within the various healthcare facilities are effective. To mitigate such adverse risks from 

occurring, care providers must forecast the patients' potential risks and survival rates. While models such as 

Kaplan-Mier (KM) have been effective in the prediction of risk events in healthcare, it is ineffective considering 

it assumes that there would be an equal chance of observing the event of interest of the censored patient, which 

is not always the case as in many instances there are content risk events for in emergency care. The proposed 

model considers the contending risk events enabling the emergency care providers to prioritize the greatest risk 

in emergency care, thus reducing.  
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I. INTRODUCTION 

Many healthcare emergency incidents have both long-term and short-term impacts on people's health 

while also placing additional demands on healthcare organizations [1]. The emergency planning and 

management to address these demands are often very complex. Besides, the many determinants of mental and 

physical well-being often imply that a wide variety of non-medical-care organizations may have roles in the 

prevention and recovery efforts, extending to the public, private, and voluntary sectors. Considering to dynamic 

nature of medical emergencies, they often come with competing risks. The concept of competing risk or 

competing hazards, particularly in mortality and healthcare victims of a medical emergency are likely to 

succumb to the injuries from the accident or suffer a stroke due to the shock from the accident mostly when only 

one of these can occur it is termed as "competing event." Thus, in emergency planning and response, healthcare 

service providers must conduct a competing risk analysis that can help estimate the marginal probability of an 

event in the presence of competing events.  

 

II. Literature Survey 

In medical situations and emergencies, the main outcome is the time to an event. Many studies 

evaluating time-to-event data often use the term "survival" to designate the methods and synonymously denote 

techniques used to estimate the occurrence of events at various follow-up periods for the population cohort [2]. 

The current body of research cites Kaplan-Meier (KM) as the most used method to evaluate time-to-event 

analysis. The model has received a lot of traction in academia because it is executable in most statistical 

packages. A study conducted by Sprung et al. in critical care applied this methodology to assess the influence of 

steroid therapy in patients with sepsis and septic shock on shock reversal [3]. The finding of the study confirmed 

that steroids decreased vasopressor dependence. 

Nonetheless, different scholars and studies have criticized the use of KM in the case of competing 

events considering the methodology assumes that there would be an equal chance of observing the event of 

interest of censored patients [4]. This presumption is often incorrect, particularly in cases where there is no 

chance of the event of interest. This can be exemplified by a case where readmission to a hospital is an event of 

interest. The death of a patient serves as a competing event. When the patient dies, the risk of readmission 

ceases to exist regardless of the observation period. Thus, failing to consider the contending events in survival 

analysis results in overestimating the cumulative incidence of events [5]–[9]. Considering the pitfalls of the KM 

method, alternative methods must be designed or used for survival analysis.  
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III. Workings 

Algorithmic Prediction of Contending Risk Events (Hazards) 

Modeling regression for competing risk events 

Fitting an AI regression model on competing risk events for a single risk Kaplan-Meier failure prediction, a 

survival function S(t) is determined such that the probability of a patient, or other objects of interest in 

healthcare emergency, surviving beyond any specified time-to-event is arrived at this way. 

S(t) = Pr(τ ≥ t), where t = 0, 1, 2, … is the time 

However, in most healthcare emergencies, specific causes of failure take place within the ambiance of several 

different facilitators in the presence of other different causes, which interfere with the probability of the singled-

out event from occurring. These competing risk events such that even though a patient is exposed widely to 

other failure causes, the final failure can be accredited to a particular such failure. It was observed that the 

Kaplan-Meier analysis accurately estimated the likelihood of failure independent of any other competing cause, 

but the probability of one type of contending event was accurately approximated by utilizing the cumulative 

incident function (CIF). This CIF broke down the probability of an occurrence of failure into the likelihood of 

corresponding to each contending event such that in any given time, the comprehensive probability of failure 

was equated to the individual sums of CIFs in every type of competing risk occurrence. The researcher observed 

that CIF gave an approximate probability of a margin for a given occurrence as a function of its specific cause 

likelihood and the general survival likelihood.  

The researcher noted that the CIF was an output of two approximates: 

1) The approximation of hazardous occurrences at ordered failure time tf for the occurrence-type of concern, 

denoted as: 

 
where the value of mcf showed the number of occurrences for a given risk c, at a particular time tf and with nf as 

the total number of subjects. 

2) The approximation of the general likelihood of surviving last time (of-1): 

  
The researcher resolved that S(t) denoted the comprehensive survival function and necessarily not the cause 

specific survival function. It was realized that the reasonable grounds for taking the comprehensive survival 

function into key focus was for the simple reason that a patient would have made it through all other contending 

events for it to register a failure from the occurrence c at a time tf. Having the two approximates, the 

computation of the approximate incidence's likelihood of registering a failure from an occurrence c at a 

particular time tf was noted as shown below: 

 
Therefore, it was observed that the likelihood of registering a failure from an occurrence c at a time was 

essentially the result of making it through the preceding periods and the specific cause of the hazardous event at 

a time tf. The researcher realized that the CIF for an occurrence c at a particular time tf was resolved by 

calculating the total summation of time tf (i.e., from f
’
=1 to f’=f) of the likelihood of the incidences overall 

occurrences c failures that were registered. The expression was then denoted as follows:  

 
It was realized that CIF was the same as the 1-KM approximator in the absence of a contending event. 

In the presence of a contending event, the approximator 1-KM differed from the CIF because of the use of the 

function of survival S(t) that would count the number of failures from the contending occurrences plus the other 

occurrence of interest, where the approximator 1-KM was seen to utilize an occurrence specific survival 

function Sc(t), which treated the failures from the contending occurrences as censored. CIF bypasses the need to 

make unverifiable assumptions of independence of censoring on competing events by using the overall survival 

function. Since the S(t) is always less than Sc(t), the CIF is always smaller than 1-KM estimates in competing 

event data, which means the 1-KM tends to overestimate the probability of failure from the event type of 

interest. Another advantage is that, by definition, the CIF of each competing event is a fraction of the S(t); 

therefore, the sum of each hazard for all competing events should equal the overall hazard. This property of CIF 

makes it possible to dissect overall hazard, which has more practical interpretations. 

It was observed that Klein and Zhang extensively covered different approaches to regression modeling 

with competing risks in the Handbook of Statistics, Survival Analysis (Klein JP, Zhang MJ, 2007) and by 

Moeschberger, Tordoff, Kocher in the Handbook of Statistics, a Review of Statistical Analyses for Competing 

Risks (Moeschberger ML, Tordoff KP, Kochar N, 2007). The researcher observed that the multivariable 

regression analysis in the presence of competing risk data became appropriate in studying the probabilities of 
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failure in a case where every single failure arises from at least one of the many causes, essentially looked at as 

contending occurrences. The study realized that the proportional Cox standards hazards model treated the 

contending risks of the occurrence of interest as a censored observation. Lunn and McNeil (Lunn M, McNeil D, 

1995) proposed a regression model adapted from the Cox proportional hazard analysis with kcontending 

occurrences, such that each subject’s data was duplicated ktimes, a single instance for every failure variety, and 

the creation of k-1variables for the verification of fulfillment of an occurrence. Non-proportional hazards can 

also be modeled through a stratified Cox regression. 

The study observed that a semiparametric proportional hazard model that was advanced by Fine and 

Gray (Fine JP, Gray RJ, 1999) and by Klein and Andersen (Klein JP, Andersen PK, 2005) was one of the 

appropriate analyses to achieve a statistical significance for prognostic effects of pseudo values on the CIF for 

competing risks data that build upon the non-parametric test (Gray RJ, 1988). The contending risk analysis 

incorporated a non-parametric model, which utilized an adjusted Chi-squared test to yield a good comparison of 

the CIF curves among different groups. A parametric approach was noted to model the CIF based on the sub-

distribution hazard function. This proportional hazard model modeled the CIF with covariates by treating the 

CIF curve as a sub-distribution function. The sub-distribution function is analogous to the Cox proportional 

hazard model, except that it models a hazard function derived from a CIF (known as a sub-distribution hazard). 

The Fine and Gray sub-distribution hazard function for event type c can be expressed as: 

 
The above function estimates the hazard rate for event type c at time t based on the risk set that remains at time t 

after accounting for all previously occurring event types, including competing events. 

 

It was then resolved that the CIF based proportional hazard model would then be defined: 

 
This model satisfies the proportional hazard assumption for the subpopulation hazard being modeled, 

which means the general hazard ratio formula is essentially the same as for the Cox model, except a minor 

cosmetic difference that the betas in the Cox model is replaced by gammas in Fine and Gray's model. 

Consequently, we similarly interpret the gammas as we do for the betas estimated from a Cox model, except that 

it estimates the effect of certain covariates in the presence of competing events. The Fine and Gray model can 

also be extended to allow time-dependent covariates. 

Fine and Gray (Fine JP, Gray RJ, 1999) defined a sub-distribution hazard of the CIF to represent the 

hazard of falling from a given cause in the presence of competing events, given that a subject has survived or 

has already failed due to different causes. In the above example of competing events, we might want to estimate, 

for example, the colon cancer mortality rate over time, and want to know whether the mortality rate of such 

colon cancer differs between two or more treatment groups, with or without adjustment of covariates, the typical 

approach involves the use of Kaplan Meier estimator to separately estimate the probability for each type of 

event, while treating the other competing events as censored in addition to those who are censored from loss to 

follow-up or withdrawal. This method of estimating event probability is called the cause-specific sub-

distribution hazard function for causer, which is expressed as 

 
The random variable Tc denotes the time to failure from event type c, the cause-specific hazard function hc(t) 

gives the instantaneous failure rate at time t from event type c. The semiparametric proportional hazards model 

for the cause-specific subdistribution hazard of causer for a subject with covariate vector x is given by 

 
This proportional hazard model of event type c, at time t, allows the effects of the covariates to differ by event 

types, as the subscripted beta coefficient suggests. 

 
Where h0c is the baseline sub-distribution hazard of causer, and βr

T
 is the vector of coefficients for the 

covariates.  
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Modeling a mortality dataset with R 

The researcher chose death as her subject. This section utilizes COVID-19 pandemic data. The study 

used a data collection of 17,412 weekly death reports from 1995 to 2021. However, it was noted that the 

findings were narrowed for 2019-2021. It was realized that the appropriate CIF procedures would accurately 

estimate each subject's failure rate for each mortality risk event. The regression model contoured respiratory 

difficulties like lung malfunctions that were plainly expressed in other well-known disorders like influenza that 

had high mortality among older generations. In this case, the researcher used data from the Dutch statistics 

institution CBS. This data was subsequently made available within R through the cbsodataR package.   

The researcher obtained a mortality dataset sourced from the Open data from the Dutch, with access to the link 

as follows: Statistical Institute https://www.cbs.nl/en-gb/onze-diensten/open-data/statline-as-open-data. 

 

Table 1: Mortality dataset sourced from the Open data within the Dutch Statistical Institute 

 
 

The study could approximate the COVID-19 death rate by using a cause-specific hazard model. To 

grasp risk analysis in emergencies, the research concluded. A random emergency occurrence point requires this 

information to analyze the circumstance. Various emergency points would have different consequences based 

on the severity of the crisis. Other causes of mortality, such as cardiac disorders, were also targeted. It was used 

to estimate COVID-19's emergency mortality consequences. This reflects well on the COVID-19 emergency 

points in the healthcare system. Using hazard analysis in emergency settings within or without healthcare 

facilities was useful. The researcher obtained the number of deaths documented in the dataset minus the 

projected number of deaths within a certain time. The researcher needed to estimate a typical mortality index. 

No COVID-19. A pandemic emergency case was identified. The death plans were then compared without the 

epidemic. A death statistics table based on historical trends was required to produce accurate forecasts within 

the study. They had to test statistical models against historical data. The researcher extended the data from the 

models to a future period. The researcher had to model historical data. Each had their take on the data and how it 

was used. One model was shown to be better than others in predicting outcomes. The researcher had to compare 

the models' prediction ability. This would enable a bias reduction technique for the AI model, as demonstrated 

below. 

 

 

 

 

 

 

 

https://www.cbs.nl/en-gb/onze-diensten/open-data/statline-as-open-data
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Table 2: The mortalities recorded with their respective periods in time 

 
 

The researcher had to retrieve the population data from the same region. This enabled a proper indication of the 

nature of the population by gender and age groups. The following demonstrates the function calls for the 

procedure. 

A sample extract of the results of the above process is shown in Table 6 below: 

 

Table 3: Sample extract of the deaths per week per year 

Year Week Deaths year. month n_days 

1995 47 2613 1995.11 0 

1995 48 2646 1995.11 0 

1995 49 2826 1995.12 0 

1995 50 3098 1995.12 0 

1995 51 3291 1995.12 0 

1995 52 3436 1995.12 0 

 

The study had to integrate two different datasets: the mortality and population datasets. This facilitated the 

mathematical computation of the total number of mortalities per capita for every million subjects within the 

population.  

Results are shown below: 

 

Table 1: Total number of mortalities per capita for every million subjects within the population. 

Men and women 2 years 2012 0.18569 

Men and women 2 years 2013 0.184869 

Men and women 2 years 2014 0.180172 

Men and women 2 years 2015 0.176388 

Men and women 2 years 2016 0.172395 

Men and women 2 years 2017 0.176866 

Men and women 2 years 2018 0.172815 

Men and women 2 years 2019 0.174256 

Men and women 3 years 1995 0.200037 
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Men and women 3 years 1996 0.197554 

Men and women 3 years 1997 0.196222 

Men and women 3 years 1998 0.197246 

 

Table 4: Population data per year 

2012 0.506544 

2013 0.512131 

2014 0.527228 

2015 0.542534 

2016 0.560345 

2017 0.571885 

2018 0.58874 

2019 0.608726 

2020 0.628029 

 

The study moved ahead to do a filter application process function to arrive at the overall population as shown 

below: 

The study demonstrated the details of the population dataset that was retrieved monthly as shown thus below: 

Generated results were as shown in Table 9 below: 

 

Table 5: Generated results of the population dataset per month 

17.18108 2018.01 

17.18548 2018.02 

17.19231 2018.03 

17.1931 2018.04 

17.1989 2018.05 

17.20798 2018.06 

17.21311 2018.07 

17.2176 2018.08 

17.23823 2018.09 

17.2598 2018.1 

17.27123 2018.11 

17.28058 2018.12 

17.28216 2019.01 

17.29002 2019.02 

17.29934 2019.03 

17.3057 2019.04 

17.31339 2019.05 

17.32199 2019.06 

17.32799 2019.07 

17.33515 2019.08 

17.35935 2019.09 

17.38538 2019.1 

17.39936 2019.11 

17.40716 2019.12 

17.40759 2020.01 

17.41397 2020.02 
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17.42386 2020.03 

17.42426 2020.04 

17.41965 2020.05 

17.42181 2020.06 

17.4258 2020.07 

17.43092 2020.08 

17.44482 2020.09 

17.4653 2020.1 

17.47244 2020.11 

17.47648 2020.12 

17.47542 2021.01 

17.47663 2021.02 

17.48202 2021.03 

17.48821 2021.04 

17.49469 2021.05 

17.50052 2021.06 

17.50713 2021.07 

17.51515 2021.08 

17.53552 2021.09 

 

Table 6: Data extract from population 

 
 

The data from mortality and population was later merged as shown below: 

Generated results from the plot: 

The researcher had to go ahead and plot the average mortality rate per week against the total number of 

mortalities in every given year, which showed the tendencies that were there before the year 2007 and those that 

were observed after the year 2010 significantly differed. This was useful since the inclusion of a yearly timing 

pattern in the predictions made together with the older patterns before the year 2007 was seen to have the 

potential to distort the predictions.  

 

Modeling process with the merged dataset 

The researcher then started modeling the two datasets. Initially, the researcher had to create some basic 

models. These were built to compare the most complicated models. The researcher employed basic ways to test 

the model's accuracy. The researcher had to clear the database of all 2020 and 2019 records. Incorporating data 

into models that solely represented information before 2018 was required. We used 2019 data. The researcher 

must next compare the deduced work to the 2019 data. Due to the nature of the data assessed, non-sampled 

forecasts were considered. Comparing the model's study predictions to actual data, i.e., data that wasn't utilized 

to approximate the model parameters, revealed a good resolution. 

. The results are shown below: 
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Figure 1: Model prediction results 

 

The modeling process continued with the creation of two separate data subsets that were for different 

functions. One set was used for estimation, while the other was utilized in the evaluation process.  

To compare how well the models forecast, two measures were required: the mean absolute prediction 

error (MAE) and the mean squared prediction error (MSE) (MSE). The study found that MAE took the absolute 

values for the discrepancies, whereas MSE took the squared values. The research investigation found MAE 

valuable in that it could directly test the accuracy of the mortality estimates. It was noted that these either came 

out too frequently or too infrequently. However, the utility of MSE was proved by its ability to obtain error 

details that were closely connected to the samples used. The study found that MSE penalized the heavier 

prediction mistakes the most since they were squared.  

 

Linear regression model (LRM) fitting 

The researcher used the initial model's linear regressive characteristics to represent a week as a 

categorical variable. The equivalent of this was using weekly averages from 2010 to 2018 to estimate the same 

week in 2019. The LRM was manufactured in two variants. The dependent variable was the mortality rate, 

whereas the dependent variable in another was the raw mortality numbers. The results indicated that every week 

was treated as a distinct class, with its regression coefficient. The model also can provide weekly average 

forecasts. Using this precise data, the team obtained the model's 2019 forecasts and correct process flaws. The 

study then ran a model utilizing raw mortality data as the dependent variable, yielding intriguing results.  

The model's MAE was 6.34, with a mortality rate as the dependent variable. Multiplying this value by 

the number of weeks in a year and the total population for the census count of 2019 found 5698 predicted 

deaths. This was deemed incorrect. Similarly, the other comparative research model employed real raw 

mortalities as the dependent variable and predicted actual mortality with an MAE of 164.84. The study 

concluded that the MSE errors could not be easily compared since the dependent variables were of different 

scales. The study concluded that the two models might be utilized to create standards despite their simplicity.  

The model's MAE was 6.34, with a mortality rate as the dependent variable. Multiplying this value by 

the number of weeks in a year and the total population for the census count of 2019 found 5698 predicted 

deaths. This was deemed incorrect. Similarly, the other comparative research model employed real raw 

mortalities as the dependent variable and predicted actual mortality with an MAE of 164.84. The study 

concluded that the MSE errors could not be easily compared since the dependent variables were of different 

scales. The study concluded that the two models might be utilized to create standards despite their simplicity. It 

was seen that the two models gave a poor performance than the ones that had a more simplified trend for linear 

time. It was noted that the entire population's coefficients within the country turned out positive and were quite 

remarkable. However, they could not give a much wider predictive leverage compared to the linear time trends. 

The variables were seen to correlate with one another highly. However, it was observed that not all were very 

relevant for accurate predictions except one.  

The best model employed people between 65 and 80 as predictors. The lead analysis closely followed 

the percentage of those aged 80+. The investigation found no significant differences in the models' ability to 

forecast. The chart below compares the model's performance. The model predicts the temporal trend in red, 

whereas the 65-80 age group shares a green.  
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Figure 2: Models predictive performance 

 

The study found that the models overstated the predicted outcome up to week 40 and after that had a 

very close relationship to the observed numbers. After a few weeks of adequate indicators for time trends, a 

dramatic shift was detected up to the 40th week. As high temperatures were shown to affect death rates 

positively, it was required to add weather information to the predictors before continuing with the research.  

A characteristic that cut across the population's variables showed just one change every year. This was 

not practical since population dynamics occur over time. The scientists next tested if adding monthly population 

statistics would help. The study found worsening forecasts. The optimal model would thus number the raw 

mortalities as a weekly function, considering the older age group. 

The risk event time lag 

The work improved the model fitting by adding delayed death rates and death rates. Autocorrelation (ACF) and 

partial autocorrelation (PACF) functions were substantially established for the first order and preceding order 

autocorrelation. This meant that mortality rates for the current week were highly associated with death rates for 

two weeks ahead. 
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Figure 3: Comparative analysis on number of deaths 

 

Adding the first and second lags greatly improved the model's fit. It let the researcher estimate fatalities 

one and two weeks in the future with a lag model. Each week was a category variable. Every week had one. In a 

realistic scenario, there should be weekly modifications. Less over-fitting was predicted because of the weekly 

dummies. A sine curve might substitute a weekly dummy for a more flexible period. The model's prediction 

performance was superior to the standard. It became a reserve option. Figure 4 displays the correct sine curve 

model forecasts in red, the data for 2019 in blue, and the weekly dummies predictions in green.  

 

 
Figure 4: Predictions from the sine curve model 

 

Fitting a Non-Linear model 

During the investigation, it was noted that all prior models were linear. However, the weekly death rate and 

actual mortalities surpassed with significant frequency. These numbers deviated greatly from the normal 

distribution curve. The findings are shown in the histograms in figure 5:  
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Figure 5: Histogram showing mortality rate per week as well as deaths per week 

 

The researcher examined generalized linear models for dependent variables that normally follow a 

distribution in response. The investigation required negative binomial model fitting using MASS R's package. 

This usage was required due to its capacity to tolerate an overdispersion.  

The study found that the model's ability to anticipate data from 2019 reliably was quite good. But it 

wasn't as good as the standard. The study concluded that the negative binomial model should be retained. The 

explanation was that the negative binomial model performed better for over-dispersed data counts than the linear 

model. The research found that producing approximation values for uncertain predictions was difficult, 

especially using the negative binomial model.  

 

Robust regression modeling 

The analysis found that specific weeks from 2010 to 2018 had very high fatality rates. This was due to 

competing risks such as flu outbreaks and heatwaves. These striking findings seem to impose disproportionate 

impacts on the models. This would result in model inclinations that would have varying habits from the start and 

predictable consequences. The investigation found three main outliers in the next model. These influenced the 

model, especially figure 6 below. 

 

 
Figure 6: robust regression model outcomes 

 

 The study found that robust regression was a superior technique to removing the three 

observations. The study discovered that robust regression might reweight the data. This was based on the nature 

of the unexpected. The investigation found that the outliers suspected as an outcome were not eliminated from 

the data utilized and contributed little to the model's approximates.  

The model had the best prediction ability, with an MAE of 72.06. Compared to the standard, it outperformed it. 

Figure 7 compares the robust model's predictions to those of the non-robust model. 
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Figure 7: Comparative prediction outcomes of the robust and non-robust model 

 

Adding temperature risk event 

The analysis concluded that some data outliers were due to severe weather conditions, with some being 

extremely low and others very high. The researcher then added temperature data to the model to see whether any 

significant differences were found. Notably, the rnoaa program was integrated, which generally provides global 

weather data. Rnoaa was used to gather daily minimum and maximum temperatures from a Dutch weather 

station. The researcher produced daily and weekly aggregate numbers for the mortality and population statistics. 

The research then attached the newly discovered meteorological data with the remainder. The study predicted 

temperature not to affect mortality, yet it did. The study used a residuals graphic from the models compared to 

weekly temperature records for the lowest and maximum values to clarify the threshold points.  

 

 
Figure 8: Residual plots to observe the point of increase 

 

Extreme weather might explain certain data outliers, such as cold or hot periods. We can add 

temperature data to the model to see whether it matters. To view open historical weather data from around the 

world, install rNOAA. We'll extract a time series of daily minimum and maximum temperatures from a single 

Dutch weather station and then aggregate them to match mortality and population numbers.  

Now we can link the new weather data to the rest of the data.  

It's up to us to model temperature. Temperatures in the usual range should not influence mortality, yet 

they do. We may plot the residuals from one of our models (Model 8b) against the weekly minimum and 

maximum temperatures to find these boundaries. 
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Uncertainty and prediction intervals 

After reviewing the various models, the two finalists had to be chosen. One model specified resilient 

linearly regressive forms, whereas the other specified negatively binomial functions. Both models used raw 

mortality numbers as the dependent variable, and the sine trend, 65-80 age bracket share, temperature, and 

weekday count as predictor functions. The researcher then went on to calculate the genuine prediction 

uncertainty.  

Prediction intervals can be used to assess model uncertainty. The study avoided any misunderstanding 

with confidence intervals (which represented uncertainty about the anticipated value of a result as a function of 

some predictor value). The researcher might readily get the robust linear regression model prediction intervals 

by using a prediction function. 

 

 
Figure 9: Mortality in 2019 predicted (red) and observed (blue) 

 

As seen in the graph, the prediction intervals were rather large. They must have been too gentle 

because no value reported in 2019 dropped outside the cognizable intervals. The gray lines represented the 

degree of confidence and were solely used for demonstration reasons; they were much thinner and hence 

ineffective for evaluating the prediction uncertainty outcomes. So the prediction interval coverage has to be 

compared to the model estimations.  

 

 
Figure 10: Mortality 2010-2018 predicted (red) and observed (blue) 

 

The prediction intervals were sufficiently covered to provide a dataset for 'training' that included values 

outside the 95 percent interval predictions. Aside from seasonal cycles and minimum temperature, these were 

strongly tied to pandemic flu peaks. The study found that anticipating them was difficult and that the prediction 

intervals were too wide. The researcher then addressed the negative binomial specification, which was intended 

to manage the dependent variable's overdispersion better. The image below shows no substantial differences 

between the inappropriately behaved weeks from week one to week 52.  
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Figure 11: Inappropriately behaved weeks ranging from week one to week fifty-two 

 

 
Figure 8: Mortality predictions and observations 

 

Using these models to predict mortality 

Finally, the researcher resolved that the algorithms would be appropriate in forecasting mortality data 

for 2020. Our models were seen to be robust linear regression and negative binomial regression. It was, 

therefore, necessary to assess their prediction uncertainty. Mispredictions resulted in 322687 fatalities, while the 

MSE was 366129. These indicators are much higher than any year between 2015 and 2019. In 2018, we had the 

worst predictions ever. Based on models that predicted mortality for any year between 2015 and 2019, fatality in 

2020 appears to be exceedingly rare and unpredictable. The researcher then went ahead to plot the results. Death 

rates in 2020 were shown in blue (as measured by CBS). The negative binomial model's predictions are 

presented in green, whereas the robust linear regression model's predictions are red. The negative binomial 

model's prediction intervals were slightly larger, but the two models are otherwise identical. Remember that the 

95 percent prediction intervals were wide and that none of the observed values for 2019 approached the 

prediction intervals' limits. 

 
Figure 9: Mortality in 2020 predicted (red and green) and observed (blue) 
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To be precise, additional mortality in 2020 was 15613 fatalities, based on the best forecasts available. This 

represents 10.21% of the predicted total number of fatalities for the year. COVID-19 could not easily be held 

accountable for all additional mortality. There have been no wars or natural disasters this year, no evidence of a 

significant flu epidemic, and the model appears to have adequately predicted the summer heat-related mortality, 

so it has already been incorporated in. As a result, COVID-19 is responsible for the observed increase in 

mortality. Returning to the primary objective of this modeling exercise, we can state that our best estimate for 

the impact of COVID-19 on mortality, based on 2020 data, was an increase of 15613 deaths. 

 

IV. CONCLUSION 

The contending risk model helps enhance emergency case response in healthcare by predicting the 

most likely health hazard and directing resources towards mitigating such risks. The model determines the 

probability of a particular risk occurring, especially when risks would mean that the alternative risk is avoided. 

The model is important in the emergency health response as it allows the emergency service providers to 

prioritize the greatest risks that are likely to give the best forecast of fatality with respect to the contending risk 

events in the emergency healthcare setting.  In this respect, it is important for further research to be conducted 

on contending risk and how best the model can be utilized to help in mitigating risk by forecasting the most 

likely risk event.   
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