International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 8 Issue 6 Ser. 1120201 PP. 01-10

Comparing Metaheuristic Procedures to Solve the Single-Source
Transportation Problems

Mata Crespo, R.!
1Department of Statistics and Operational Research, School of Industrial Engineering Valladolid University
47011 Valladolid, Espafia

Abstract

In transport networks, it is generally required that all demand points must be supplied from a single source. The
formulation of the model is presented and randomized versions of two well-known constructive heuristics are
applied: On the one hand, the maximum regret method and on the other hand the maximum demand method. In
addition, two other heuristic improvements are applied with local search techniques: “shift” and “swap”
improvements. With all elements listed above, the GRASP method to solve single-source transportation
problems is presented. However this work mainly provides simple tools for the optimization of the logistics
(supply chains) of food and forestry products.

Keywords: Transportation Problems, Integer Programming, Heuristic Procedures, Combinatorial
Optimization, Statistical Inference, Local Search.

Date of Submission: 23-06-2020 Date of acceptance: 11-07-2020

I. INTRODUCTION

In general, the transportation problem refers to the shipment of quantities, products, etc. from its origin to its
destination. However, logistics must lead the way: First and foremost, to establish a transport model and also
to be optimal. Consecuently the modelling of the problem and its optimization are two essential subjects. The
basic nations on necessary operational research can be found in [16].

In the formulation of a transportation model, m sources of a certain amount s; of units supplies of a product,
i=1,...,m are considered. In addition, we must consider the n destination points that have demands or orders
of d; units of that product. The cost of sending a unit of the product from origin i to destination j, what it is
known as unit transport cost, is¢;; > 0,i=1,...,m,j=1,..,n.

It is necessary to limit transport costs, 7 = 1,....n and, obviously, the purpose is to minimize the total cost.
It is normally assumed that the cost of transportation is directly proportional to the amount transported. Thus
the problem can be handled as a linear programming problem. The data can be organized in a double entry
table: supplies (s;) vs. demands (d;), the costs (¢;;) being the table coeflicients.

Alternatively, a graph could be used since it allows not only a guick and intuitive but also qualitative
visualization of transport routes, formulating it as a network optimization problem [3].

With regard to a transportation problem, a demand point could be supplied from a number of origins, but
it might be quite expensive. Due to this reason, the condition that any demand point is supplied by a single
origin can be imposed. We will call this condition the single-source constraint. Nevertheless, considering that
it is necessary to analyze how much the total cost would increase. Therefore just knowing what the total cost
1s 1f the condition of single-source is required. With these purposes two formulations for the problem of single-
source transportation (SSTP) are presented. In spite of its importance, this topic has not received a great deal

of attention from the 70’s ([1], and [11]).

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

2 Model Formulation

2.1 First Model

As to demand point j, the variables that indicate how the demand is covered d; are z15; 2251 ... 2mj, and the
single-source constraint assumes that only one of these m wariables can have a positive value in the optimal
solution. This constitutes a special case of the logical constraint that we eall *maximum number of variables™,
which is reduced to the fact that at most a single variable of m can be positive. Modelling this condition there
are considered binary wvariables y; € {0,1}, i = 1,..m;j = 1,....n, 235 < uy; - ¥; and the logical constraint
e

S wy; =1, 5 =1....,n The upper bound can be taken as u;; = min {s;,d;}. The complete formulation is an

i=1

example of Mixed Integer Programming (MIP):

LS L
Minimize 35 e
i=1 j=1
T
subject to iy = s, ¥Vi=1,.m
j=1

LS

Z Zig = dj'_. "E’l_} = 1,. R)

i=1

Zij € uiyi. vi=1,.mV¥Vji=1,..n
m

Swy=1,vi=1,..n

i=1

zig =20 VWi=1,.m¥i=1,.n

yi; e{0,1},vi=1,.m%¥j=1,..n

2.2 Second Model

Variables are redefined as y;; = %}1. Those results in a transportation model equivalent to the original, however
with variables 0 << yij < 1 representing the fraction of the demand for point j covered or served from the source
1. Formally, the model is as 1t follows:

m L3
Minimize 3 3 egd;u:

i=1j=1
n

subject to 3} djy; < s, Vi=1,..m
=1

Sy =1L Vi=1,.n
i=1
0<yij <1, ¥i=1,.m%¥i=1.n

Now the constraints 0 < yij < 1 are replaced by y;; € {0,1} in agreement with the single-source constraint.
Hence, the problem of single-source transportation can be modelled as a problem with all binary variables,
providing an example of Pure Binary Programming (PBP), which can be formulated this way:

m L
Minimize 3} ¥ eiidivg
i=1j=1
n
subject to Y djy; <8 Vi=1,..m
3;1
E Hij = 1: Vj = 1! weuTE
i=1
yi; e{0,1}, ¥i=1,.m¥ji=1.n

3 Bounds and Heuristic Procedures

As it is well known, these methods allow to solve complicated problems in an approximate way, providing feasible
solutions that, although they do not optimize the objective function, it is sufficiently close to the optimum value
by using a reasonable time.

While the original problem is difficult to solve, the relaxed problem may be easier to work out. The most
common way to achieve a bound is the so-called linear relaxation where the g;; € {0, 1} constraint is replaced
by 0 < yij < 1.

Another bound used in this work is the called Relax and Fix (see [18]). It consists in the relaxation of the
objective function, previously establishing a tolerance (in our case tole = 0.0001 has been established) so that
if yi; = 1-tole then y;; = 1 is fixed and it is enough to impose the condition that the lower bound of y;; be 1
(setlb (y;;) = 1). Similarly, if y;; < tole then set y;; = 0, and it is enough to impose the condition that the
upper bound of y;; be 0 (setub (y;) = 0).

As for the heuristic procedures in the greedy method a feasible solution is built step by step. On the other
hand, heuristic improvement methods start from a feasible solution to the problem and try to improve it. It is
likely to combine both heuristics. For instance, a two-stage heuristic by using first a greedy method to obtain
an initial solution, secondly try to improve it by a local search method.

2

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

Alternatively, the method can be both a single-step and multistart procedure. In the latter case, some type
of randomization has to be used to obtain a different solution in each step. There are several ways to introduce
randomness to the algorithm. One of the best known procedures use a RCL (Restricted Candidate List). This
list consists of the elements candidates that offer the best values of the greedy criterion. The next candidate
added to the solution is chosen randomly from the restricted list of candidates. Such a list may have a fixed
number of elements (cardinality constraint).

In this work, randomized versions of two well-known constructive heuristics are applied: the maximum regret
method and the maximum demand method. Both cover two interesting aspects of transport logistics with a
single source, reinforcing the scope and applicability of our results to specific cases of interest to potential users.
The greedy randomized code with cardinality-based RCL has been taken from [13] (Figure 2) and [14].

In the local search procedures Algorithm [1] and Algorithm [2, the environment or neighborhood of the
feasible solution is explored through a basic operation called movement that, applied to the solution, provides
the solutions of its environment. Concretely, the method known as VNS (Variable Neighboord Search), can be
found in [10]. In this work, two local search techniques were used: “shift” and “swap” improvements. In the
first one, the movements consist of, given a solution, changing the assignment of a destination to a different
origin. However in the second case the movements consist in the exchange of assignments to two destinations,
Algorithm [3] and Algorithm [4]

In our case, only movements in the current solution environment are allowed to improve the value of the
objective function. As a consequence, we have the so-called descent method that always ends at a local minimum;
but a local optimum will not always be a global optimum. By starting with a given solution x, k = 1 is taken
and repeated until k = 2. since two types of environment are considered. The environment is explored to find
the best solution x’ of the k-th environment NK (x) and a decision is made to move or not. If the solution
obtained x' is better than x, x = x’ and k = 1 are taken. Otherwise, k = k + 1 is taken. This scheme has been
taken following [6].

In order to find better solutions than the ones we described before, the GRASP (Greedy Randomized
Adaptative Search Procedures) were used where in each iteration of the multistart (randomized) method a local
search procedure is applied to the greedy solution. This method incorporates the two main features that are
required of a metaheuristic: diversification (by randomization and repetition) and intensification through local
search. In each iteration one obtains a local minimum and, if randomization works correctly, multiple regions
will been examined so that the best solution will be close to the global optimum. To be more precise, this
paper presents hybrid algorithms that are based on constructive greedy heuristics with local search. First, the
solution is built by a construtive heuristic. Second, the local search is used to improve that initial solution, and
the last phase consists of updating the parameters that govern the process of construction in the first phase.
The three phases are repeated until the stop criterion is reached.

The methodology described can be easily adapted to other combinatorial optimization problems, since it is
in fact a particular case of the GAP (Generalized Assignment Problem) described in [8]. Also related problems
are considered in [12]. Certainly the heuristics that have inspirated this work has been taken from [7]. Moreover,
other heuristics found in [2] [9] and [I7] have been useful in this way.

4 Algorithm

This section includes main algorithms used, being M a sufficiently large quanty:

Algorithm 1 An algorithm for regret heuristic improvement using local search techniques
1: Initializations nasign=_0 zheur=0 ;ter=0 ;feas=1
2: while (nasign < n and feas = 1) do

3 iter=iter4+1;

4 while (j in destinations / ¥(j)=0) do

5 nk=0;
i}
7

8

for (iin origins) do
if (demand(j) < ofres(i)) then

: nk=nk-t1;
9: end if
10: end for
11: if (nk = 0) then
12: feas=0;
13: else
14: cminl=M;
15: for (1 in origins / demand(j) < ofres(i)) do
16: if (cost(ij) < cminl) then
17: imin(j)=1: cminl=cost(i.j);
18: end if
19: end for
20: if (nk = 1) then

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

21: regret(j)=M;:

22: else

23: cmin2=M;

24: for (i in origins / demand(j)< ofres(i) and i#imin(j)) do
25: if (cost(ij) < cmin2) then
26: i2=i; emin2=cost(1,j);

27: end if

28: end for

20: regret(j)= cmin2 - cminl;

30: end if

31: end if

32: end while
33: if (feas =1) then

34: nk=0;

35: for (j in destinations / y(j)=0) do

36: maxreg=-NM;

a7 for (j in destinations / y(j)=0) do

38: if (regret(j) > maxreg) then

30: jmax=j; maxreg=regret(j);

40: end if

Al: end for

43 nK=nK+1; ind(nK)=jmax; mark(jmax)=1; y(jmax)=imin(jmax);
43: zheur=zheur+cost(imin(jmax) jmax)*demand(jmax);

44: ofres(imin(jmax))=ofres(imin(jmax) }-demand(jmax); nasign=nasign+1;
45: end for

46: end if

47: end while

48: if (feaz = 1) then

49: ml=swapimprovement; m2=shiftimprovement;
50: end if

Algorithm 2 An algorithm for maximum demand heuristic improvement using local search techniques
Initializations nasign=_0 ;zheur=0 ;feas=1
2: while (nasign < n and feas = 1) do
nk=0;
4: dmax=-M;
for (j in destinations/ y(j)=0) do
: if (demand(j) > dmax) then
jmax=j ;
8: dmax=demand(j) ;
end if
10: end for
if (dmax = -M) then

12: nK=nK+1;
ind(nk)=jmax;
14: mark(jmax)=1;
end if
16: cmin=M;
nk=0;

18: for (i in origins / demand(jmax)< ofres(i)) do
if (cost(ijmax)<cmin} then

2: cmin=cost(i,jmax);
omin=i;
29: nk=nk+1;
end if

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

26:

28:

30:

end for

if (nk > 0) then
¥{jmax)=omin;
zheur=zheur+cost(omin,jmax)*demand(jmax);
ofres{omin|=ofres(omin)-demand(jmax);
nasign=nasign+1;

else
feas=0;

end if

end while

. if (feas = 1) then

zl = zheur;
ml=swapimprovement; m2=shiftimprovement;
if (zheur < zimprove) then
zimprove = zheur;
yimprove = y;
end if
end if

Algorithm 3 An algorithm for shift function

3

12:

18:

21:

24:

aT:

30:

33

36:

39:

42:

zini=sum(j in destinations)demand(j)*cost(y(j).j):
final=0;
while (final=0) do
maximprovement=-5;
for (j in destinations) do
il=y(j);
nk=0;
for (i in origins / 1 # 1l and demand(j)< ofres(i)) do
nk=nk+1
if (nk = 0) then
cmin=M;
for (i in origins / i # il and demand(j)<ofres(i}) do
it (cost(i,j)<cmin) then
cmin=cost(1,j};
i2=i;
end if
end for
improvement=(cost(il j}-cost(i2j))*demand|(j);
if (improvement > maximprovement) then
maximprovement=improvernent;
jmax=j;
ilmax=il;
12max=12;
end if
else

improvement=-M;
end if
end for
end for
if (maximprovement < 0) then
final=1;
else
¥(jmax)=i2max;
zheur=zheur+maximprovement;
ofres(ilmax)=ofres(ilmax)+demand(jmax);
ofres(i2max)=ofres(i2max)-demand (jmax):
z3 = zheur;
end if
end while
if (zheur < zini) then
returned=1;
else
returned=0;
end if

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

Algorithm 4 An algorithm for swap function
Initializations iter=>0; final=0
zini=sum(j in destinations)demand(j)*cost(y(3).j):
while (final=0) do

4: maximprovement=-NM;

iter=iter+1;
for (j1.j2 in destinations / j1 # j2) do
il=y(jl):i2=y(j2);

B: if ofres(il }-demand(j1}+demand(j2)<0 and ofres(i2)-demand(j2)+demand(j1)<0) then
improvement=cost(il j1)+cost(i2,j2)-cost(il,j2)-cost(i2,j1);
if (improvement > maximprovement) then

maximprovement=improvement;

12: jlmax=j1;

j2max=;2;
end if
end if
16: end for
if (maximprovement < 0) then

final=1;
zheur=sum(j in destinations)demand(j)*cost(y(j).j);
20: z2 = zheur;
else

11=y(jlmax);
12=y(j2max);
24: y{jlmax)=i2;
y{j2max)=il;
ofres(il)=ofres(il }-demand(jlmax)+demand(j2max);
ofres(i2)=ofres(i2 }-demand(j2max)+demand (jlmax);
28: zheur=sum(j in destinations)demand(j)*cost(y(j).j);
z2 = zheur;
end if
end while
32: if (zheur < zini) then
returned=1;
else
returned=0;
36: end if

5 Experiments and computational results

This section describes the computational experiments that were made so as to evaluate the proposed meta-
heuristics, the computational results and a comparison between the different methods.

For experiments, we have developed our own *dataset”, generating the following uniform probability dis-
tributions with the professional version of Xpress Mosel since the number of rows and columns exceeded the
maximum allowed for the free license that is 5000. It is convenient to know the program interface and the basic
optimization environment [3].

Uniform probability distributions have been considered for: Offers ~ U(75,95), Demands ~ U(55, 85), Costs
~ UJ(100,100). The set of worked situations (different m x n scenaries) are collected in table [1] together with

the integer optimal solution which was obtained for every one.

mxn | Optimal
40x40 205438
40x100 280369
40x150 273387
40x200 | 278303
60100 430804
60200 416723
100x100 | TOS686
100x120 | 719392
100x200 | 719130

Table 1: Optimal solution for each scenary

6

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

The solution quality of each method was appraised by the percentage of variation with respect to the
optimum, so we look for a small percentage gap to have a high quality solution. Also it is interesting to gather

in Table 2 the percentage gap for bounds with all heuristic procedures.

mxn Relaxed Relax - Fix | VNS Regret | VNS Dem. | GRASP Regret | GRASP Dem.
40x40 1.17 % 1.4% 1.8% 2.5 % 0.59 % 0.61 %
40x100 0.15 % 0.06 % 0.008% 0.11 % 0.0001 % 0.04 %
40x150 0.08 % 0.0001 % 0.0001% 0.16 % 0.0001 % 0.16 %
40x200 0.079 % 0.03 % 0.02% 0.05 % 0.005 % 0.0001 %
60x100 0.23 % 0.01 % 0.03% 033 % 0.03% 0.30 %
60x200 0.12% 0.02 % 0.001% 0.04 % 0.001 % 0.04 %
100100 0.76 % 0.23 % 0.25% 1.09 % 0.26 % 0.74 %
100x120 0.21 % 0.07 % 0.05T% 0.54 % 0.025 % 0.37 %
100x=200 0.093% 0.058 % 0.02% 0.07 % 0.01 % 0.05 %
Average | 0.321333% | 0.208668 % 0.24289% | 0.543333% 0.102336 % | 0.256668 %

Table 2: Percentage gap for the different bounds and heuristic procedures

Moreover, computational time (in seconds) is reflected in Table 3 for each scenary and also its average values
were caleulated for the different methods that were used.

mxn Relaxed | Relax - Fix | VNS Regret | VNS Dem. | GRASP Regret | GRASP Dem.

40x40 0.047 0.016 0.016 0.016 0.281 0.094
40100 0.125 0.031 0.032 0.015 0.57¢ 0.063
A0x150 0.187 0.032 0.046 0.014 0.842 0.062
40200 0.218 0.062 0.047 0.011 1.139 0.003
60100 0.203 0.031 0.062 0.016 1.31 0.109
60x200 0.343 0.078 0.124 0.010 2.449 0.156
100x100 0.359 0.062 0.187 0.047 3.448 0.78
100x120 0.359 0.062 0.187 0.047 3.448 0.78
100x200 0.603 0.11 0.328 0.016 6.505 0.297
Average | 0.278444 | 0.0555556 | 0.116111 | 0.0195556 2.27244 0.227111

Table 3: Computational times for the different bounds and heuristic procedures

The percentage gap versus the computational time is displayed in Figure (Il The average percentage gap
versus the average computational time for hounds and heuristic procedures is displayed in Figure 2

Plot of Percentage gap vs Time
25 * ‘ ; ™ [Method
L { b GRASP Dem
GRASP Reg
2r- = Relax-Fix
i Relaxed
&l VNS Dem
g 1,95+ -+ VNS Regret
g [
g 1r i
& E ¢ o
05"]
[&,
= +
o-%5 5 . =
0 2 4 6 8
Time

Figure 1: Percentage gap vs. Computational time

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

Plot of Percentage gap vs Time
0,6 ' ' ' ' ' -/ |Method
n GRASP Dem
o8l | GRASP Reg
: Relax-Fix
i Relaxed
4 0,4 - - VNS Dem
9 © VNS Regret
803+ —
=
g g
E 0.2~ -
0,1 - .
0 = L 1 I L ! 1
0 04 0,8 1.2 1,6 2 24
Time

Figure 2: Average percentage gap vs. Average computational time

Besides, it is interesting to compare the average percentage gap versus the average computational time only
for heuristic procedures as it is shown in Figure

Plot of Percentage gap vs Time
06 ' ' ' ' ' 1 |Method
b GRASP Dem
il | GRASP Reg
' VNS Dem
N VNS Regret
2 04 .
(]
o
803 -
=
(] o
E +
502 .
01 _
0 i | | | L L L
0 0.4 0.8 1.2 1,6 2 2,4
Time

Figure 3: Heuristic procedures: Average percentage gap vs. Average computational time

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

From the statistical point of view, it appears to be relevant a comparative study of both percentage gap
and time for the different methods. For that purpose the multifactor analysis of variance, ANOVA ([4] Chapter
5) was used dealing with the data given in tables Bl and @] In our case, the null hypothesis Hy states that the
average values of the six methods are the same and as an alternative hypothesis H, states that the average values
of the six methods are different. In this analysis, we considered the confidence level at 95 % and therefore the
nominal level o = 0.05. Tables 4 and 5 summarize the ANOVAs of the variables quality and time, respectively.

55 Dt F p-value
Method | 0.9866 | 5 [0.8082 | 0.5496
Residuals | 11.7197 | 48

Table 4: Analysis of Variance for percentage gap

Taking into account the result obtained (Table d), the quality variable shows a p-value greater than the
nominal level o = 0.05, therefore the null hypothesis of equality between the six averages is not rejected and
we cannot affirm that there is some difference between them. The six methods can be considered equivalent in
terms of quality.

55 Df F p-value
Method | 34.566 | 5 | D.805 | 0.000001678 ***
Residuals | 33.844 | 48

Table 5: Analysis of Variance for time

The time p-value is small enough (as indicated by the lower significance coded with the asterisks in Table
[, the p-values are < 0.05) to reject the null hypothesis of equality between the six averages and there is some
difference between different methods. The next step is to determine that difference. For this, the Tukey multiple
comparison was used. The confidence level has also heen established at 05 % and therefore the nominal level
o = 0.05.

The results which were obtained are given in Table [Gl

Methods Iifference | Lower bound | Upper bound p-value
GRASP Reg-GRASP Dem | 204533333 0.8705436 3.2201231 0.0000643
Relaxed-GRASP Dem 0.05133333 | -1.1234564 1.2261231 0.9999945
Relax Fix-GRASP Dem | -0.17155556 | -1.3463453 1.0032342 0.0979388
VNS Dem-GRASP Dem | -0.20755556 | -1.3823453 0.0672342 0.9949288
VNS Regret-GRASP Dem | -0.11100000 | -1.2857807 1.0637897 0.9997503
Relaxed-GRASP Reg -1.99400000 | -3.1687807 -0.8192103 | 0.0000096
Relax Fix-GRASP Reg -2.21688880 | -3.3916786 -1.0420991 | 0.0000146
VNS Dem-GRASP Reg | -2.25288880 | -3 4276786 -1.0780801 | 0.0000106
VNS Regret-GRASP Reg | -2.15633333 | -3.3311231 -0.9815436 | 0.0000247
Relax Fix-Relaxed -0.22288880 | -1.3076786 0.09519009 0.0920369
VNS Dem-Relaxed -0.25888880 | -1.4336786 0.9159000 0.9860127
VNS Pen-Relaxed -0.16233333 | -1.3371231 1.0124564 0.9984177
VNS Dem-Relax Fix -0.03600000 | -1.2107807 1.1387897 0.9999941
VNS Reg-Relax Fix 0.06055556 | -1.1142342 1.2353453 0.9999875
VNS Reg-VNS Dem 0.00655556 | -1.0782342 1.2713453 0.0008742

Table 6: The Tukey multiple comparison test for pairwise time averages among the different methods

The Tukey multiple comparison of means allows us to state that the differences between the times of the
GRASP method based on regret are clearly significatives with respect to the other methods since the p-values
are the smallest ones.

Comparing Metaheuristic Procedures To Solve The Single-Source Transportation Problems

6 Final conclusions

The main contribution of this work is the application of the GRASP heuristic for the single-source transport
problem based on the maximum regret eriterion or the maximum demand criterion. The computational exper-
iment showed that the GRASP method based on the marimum regret criterion obtains the best results, even in
problems considered as NP-hard within reasonable times. From the results in the comparison of the methods
considered we can conclude that the worst option is the VNS method based on maximum demand in terms of
quality, taking into account the percentage gap of variation with respect to the optimal value.

As for the bounds, the relaxed problem and the Relax-Fix get quick solutions, providing better solution in
terms of quality the Relax-Fix. For quick solutions with heuristic methods, the VNS method based on maximum
regret and the GRASP method based on the maximum demand criteria are also fast methods.

It i= interesting to highlight the efficiency of the heuristic procedures that were used, both GRASP and VNS,
based on maximum regret against the maximum demand criteria. The results favorably compare the GRASP
method based on the maximum regret criteria in terms of cpu times and quality of the solution.

References

[1] A. DE Mawo anp C. Rovepa, An All Zero-One Algorithm for a Certain Class of Transportation Problems,
Operations Research, 19(1971), 1406-1418.

2] L. DErouss, Metaheuristics for Logistics, Wiley-ISTE, London, 2016.

B3] A. Diaz, F. GLover , HM.Guaziri, J.L. GoNzALez, M. Lacuna, P. MoscaTto anp F.T. TsENG,
Optimizacion Heuristica y Redes Neuronales, Paraninfo, Madrid, 1996,

[4] A. Garcia PEREz, Métodos avanzados de estadistica aplicada. Métodos robustos y de remuestreo, UNED,
Madrd, 2012.

[5] C. GuEreT, C. Prins AND M. Sevaux, Applications of Optimization with Xpress-MP, Eyrolles, Paris,
2002,

[6] P. HanseEN, N. MrLaDENOVIC AND J. A. M.PEREZ, Bisqueda de entorno variable, Inteligencia Artificial:
Revista Iberoamericana de Inteligencia Artificial, 7(2003), 77-92.

[7] H.R. Lourengo, Heuristicas adaptativas para el problema de asignacidn generalizada, Proceedings of The
First Spanish Congress in Evolutive and Bioinspired Algorithms, Mérida (Spain), 2002, pp. 267-275.

[8] 5. MarTELLO AND P. ToTH, Generalized assignment problems, Proceedings on the Third International
Symposium on Algorithms and Computation, London, 1992, pp. 16-18.

@] R. Marti, Procedimientos metaheuristicos en optimizacidn combinatoria, Matemdtiques, 1(2003), 3-62.
Valencia (Spain).

10] J.A Moreno, Bisqueda por Entornos Variables para Planificacidn Logistica, XII Congreso Espanol
de Metaheuristicas Algoritmos Evolutivos v Bioinspirados & XII Metaheuristic International Conference,
Barcelona, 2017.

[11] R.V. NacELmouT AND G.L. THOMPSON, A single source transportation algorithm, Computers & OR,
7(1080), 185-108.

[12] T. éNCA.\I, A Survey of the Generalized Assingnment Problem and [ts Applications, INFOR Journal,
45(2007), 123-141.

[13] M.G.C. REsENDE aND J.L. GonzALEzZ, GRASP: Procedimientos de Bisqueda miopes aleatorizados y
adaptativos, Inteligencia Artificial: Revista Iberoamericana de Inteligencia Artificial, 7(2003), 61-76.

[14] M.G.C. ResENDE anD C.C. RiBEIRO, Optimization by GRASP: Greedy Randomized Adaptive Search
Procedures, Springer, Berlin, 2016.

[15] V. Sminivasan anp G.L. THompsoN, An Algorithm for Assigning Uses to Sources in a Special Class of
Transportation Problems, Operations Research, 21(1973), 284-205.

[16] H.A. Tana, Operations Research, Pearson, Mexico, 2012.
[17] E. TaLBi, Metaheuristics: From Design to Implementation, Wiley, USA, 2000.

[18] M.A. Trick, A linear relaration heuristic for the generalized assignment problem, Naval Researh Logistic
(NRL), 39(1992), 137-151.

10

