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Abstract 
This work deals with the performance improvement study of the direct torque control of induction Motor based 

on genetic fuzzy Second Order Sliding Mode Control. The main objective is to improve the performance of the 

system by reducing electromagnetic torque ripples because the direct torque control using conventional Second 

Order Sliding Mode Control regulators has certain disadvantages such as significant flux, torque ripples and 

sensitivity to parametric variations. To overcome these drawbacks, we apply a new type with more robust 

regulators such as the genetic fuzzy second order sliding mode control. To provide a numerical comparison 

between different controllers, a performance index based on speed error is assigned. 

The simulation results for various scenarios show the high performances of the proposed direct torque control 

genetic fuzzy Second Order Sliding Mode Control system by effectively accelerating system response, reducing 

torque and flux ripple and a very satisfactory performance has been achieved. 

Keywords: induction machine, direct torque control, fuzzy Second Order Sliding Mode Control, genetic 

algorithm 
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I. INTRODUCTION 
The control of IM is considered complicated because of the difficulty of obtaining the decoupling of the 

torque and the flux. In order to overcome these difficulties, high-performance algorithms have been developed 

[2], [3], and [6]. Among the control, techniques currently applied to asynchronous machines to ensure the pursuit 

of predetermined trajectories, robustness to parameter variations and disturbance rejection with an unknown 

response we can find direct torque control and sliding mode control. 

Due to the advances in power electronics and the recent revolutions of computers  Sliding Mode Control 

have made an important research field, which can be developed by a lot of scientists in many countries. The 

synthesized control consist of two main terms, the first allows the approach to this surface and the second 

maintaining sliding along it towards the origin of the phase plane [1] [10] [11]. The global controlled as well 

constructed ensures good tracking performance, rapid dynamic and short response time.  

Nevertheless, the classic sliding mode of the first order has a phenomenon of chattering, which is a 

significant disadvantage. To reduce this phenomenon a new class of SMC algorithm, called the second-order SMC 

(SOSMC) 

Algorithm, has been proposed, this approach allows reducing the chattering effect. In order to develop a 

robust DTC, current researchers have proposed the fuzzy logic technique that is part of artificial intelligence to 

solving robustness problems. 

In last years, the fuzzy logic controller has improved successfully as result of nonlinear and complex 

processes [16] [22]. The general configuration uses type IF-THEN type with linguistic rules. The main advantage 

of this approach is that it does not need a precise mathematical model of the electric machine, FLCs is robust and 

its performance is insensitive to parameter variations [8], [9], [12], [17], [23]. 

    In our case, we have proposed a DTC with a speed controller based on the fuzzy second order sliding 

mode control to obtain a more flexible control. This last solution allowed the reduction or even the attenuation of 

the chattering phenomenon while keeping the properties of robustness [13] [14].  

    A hybrid approach integrating the genetic algorithms (GA) with the fuzzy logic second order sliding 

mod controller based direct torque control of induction motor to enhance the system performance and 

stability[14],[15],[24].The developed algorithm achieves an optimized tuning of a fuzzy SOSMC scaling factor  
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    The strategy proposed in this work is the study of the dynamic behavior of induction motor controlled 

by a DTC during a speed adjustment by regulators (SOSMC) and by regulators based on genetic fuzzy second 

order sliding mode. Simulation results reveal that the FSOSMC-DTC has a very robust behavior against the 

SOSMC-DTC. 

 

II. MODELING OF THE INDUCTION MOTOR 
By applying the Park transformation to the model of the induction motor, the equations are expressed in 

a reference frame linked to the rotating field as follows [1]: 
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The stator and rotor fluxes are expressed, respectively, by: 
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For studying the dynamic behavior, the following equation of motion was added: 
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Where: J is the moment of inertia, fr is the friction coefficient, Tem is the electromagnetic torque, Tr is the 

load torque. 

Ωr  is the mechanical speed of the rotor.  

The model of the IM has been completed by the expression of the electromagnetic torque Tem given 

below: 

 ds qs qs dsem 
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Where: p is the number of pole pairs. 

 

III. DIRECT TORQUECONTROL WITH SOSMC  
The classical DTC, proposed by [1], is based on the following algorithm: 

i. Divide the time domain into periods of reduced duration Ts. 

ii.  For each clock struck, measure the line currents and phase voltages of the IM. 

iii.  Reconstitute the components of the stator flux vector and estimate the electromagnetic torque, through the 

estimation of the stator flux vector and the measurement of the line current. 

iv. The error between the estimated torque and the reference one is the input of a three level hysteresis comparator 

when this latter generates at its output the value of +1 to increase the flux and 0 to reduce it and thus increasing 

the torque -1 it  reduce this flux and 0 to keep it constant in a band. 

v. The error between the estimated stator flux magnitudes is the input of a two levels of the hysteresis 

comparator, which generates at its output the value +1 to increase the flux and 0 to reduce it. 

vi. Select the state of the switches to determine the operating sequences of the inverter using the switching table. 

vii.  The input quantities are the stator flux sector and the outputs of the two-hysteresis comparators. 

viii. The block diagram of the DTC of IM is shown in Fig. 1. 

 

 

 

 

 

 

 

 



Impact of Artificial Intelligence for Performance Improvement of Direct Torque Control .. 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Block diagram of the DTC with SOSMC of IM. 

 

IV. CONCEPTION OF FITNESS FUNCTION 

In the conception methods of GA-FSOSMC controller, among the criteria of performance the most 

known is the integration absolute error IAE which can be analytically estimated in the field of frequency as follows 

[22]: 

0

IAE e(t)dt


                                                                  (6) 

 
V. DESIGN OF FSOSMC-GA CONTROLLER  

The optimization of scaling factors of the FLC using GA can be given by the input variable {e}, and the 

error change {ec} as follows: 

ref rΩ Ωe(t)= - (t)                                                                       (7) 
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Figure2: Flowchart for fuzzy SOSMC-GA-DTC-IM 
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Table 1: Inference Rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.1  Fuzzification 

The inputs to the Fuzzy-GA have to be fuzzified before being fed into the control rule and gain rule 

determinations. The triangular membership functions (MFs) used for the input (e, ec and, ΔTem) are shown in Fig. 

3 and Fig. 4. 
 
 
 
 

 

 
 

 

 
 

 
 

Figure3: Membership functions for e and ec 

 

 

 

 

 

 

 

 

 
 

 

Figure4: Membership functions for fΔTem 

 

1.1.2  Inference and Defuzzification 

The present paper uses MIN operation for the calculation of the degree µ(ΔTem) associated with every 

rule, for example, µ(ΔTem)=Min[µ(e),µ(ec)]. 

In the defuzzification stage, a crisp value of the electromagnetic torque is obtained by the normalized 

output function as: 
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where: m is the total number of rules (7*7), µ(ΔTem) is the membership grade for the n rule, ΔTem is the 

position of membership functions in rule n in U (-15,-10,-5,0,10,15), Figure. 5. 

 

1.1.3   Control rule Determination 

The logic of determining this rule matrix is based on a global knowledge of the system operation. As an 

example, we consider the following two rules: 
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If e is PB and ec is PB then ΔTem is PB 

If e is ZE and ec is ZE then ΔTem is ZE 

    They indicate that if the speed is too small compared to its reference (e is PB), so a big gain (ΔTem is 

PB) is required to bring the speed to its reference and if the speed reaches its reference and is established (e is ZE 

and ec is ZE) so impose a small gain ΔTem  is ZE.  

 

1.1.4  Fuzzy Second Order Sliding Mode Control  

The proposed control strategy is based on the Super Twisting Algorithm. This algorithm is an exception 

that only requires information about the sliding surface [18] [19]. The application of this control strategy begins 

with the determination of the relative degree of the variable to be regulated. This variable is the speed, so we 

choose a surface that is sufficient to make the command appear. We define the following sliding surface [20] [21]: 
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Thus: 

The second-order sliding mode controllers contain two parts:     
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To ensure convergence to zero in finite time, the gains can be chosen as follows: 
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Figure 5 illustrates the general structure of the FSOSMC-DTC of DSPMSM 

 

 
Figure5: Block diagram of the proposed DTC-FSOSMC-GA tuning speed controller 
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VI. SIMULATION RESULTS AND DISCUSSION 
The results were obtained using a FSOSMC-GA algorithm programmed and implemented in MATLAB. 

The parameters of the IM are presented in appendix Table 3. To illustrate the performances of the direct torque 

control of the IM we replaced the classical PI controller by a fuzzy SOSMC-GA technique Fig. 5. The simulation 

is carried out under the following conditions: the hysteresis band of the torque comparator is set to ± 0.25 Nm and 

that of the flux comparator to ± 0.5 Wb. 

Figure. 6 depicts the waveforms of the improved performances of speed control. We note that the use of 

the FSOSM-GA controller allows the speed to judiciously follow its reference value of 100 (rad/s) despite the 

presence of a load torque of 14 (N.m) at (t=1s). It represents a clear improvement in dynamic response with a 

hybrid controller, contrary to a drive with a standard DTC where the speed has underwent slightly rejected.  

In Figure. 7 the electromagnetic torque produced by the IM which is controlled by DTC-SOSMC and 

DTC-fuzzy-SOSMC-GA is presented. In this figure, it can be noticed that the ripple is not the same for the two 

techniques. It is clear that the classical DTC-SOSMC present two problems, steady state error and high torque 

ripples. On the other hand, the DTC-fuzzy-SOSMC-GA corrects the steady state error and reduces the torque 

ripples. 

In Figure. 8, it can be observed that the currents are sinusoidal and current ripples have also a notable 

reduction in fuzzy-SOSMC-GA controller compared to the standard controller. 

Figure. 9 shows the trajectory of stator flux for the standard DTC and the hybrid DTC. It can be seen that 

this hybrid strategy has less ripple. 

The parameters of GA algorithms are reported in Appendix Table 4. 

 

 
Figure6: Comparison of the rotor speed regulation of the  DTC-SOSMC and hybrid DTC. 

 

 
Figure7: Electromagnetic torque comparisons of the two strategies. 

 

 
Figure8: Phase current for both hybrid DTC and classical DTC. 
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Figure9: Stator flux trajectory. 

 

VII. ERROR TRACKING PERFORMANCE COMPARISONS 
The three commonly used measures are Integral Squared Error (ISE), Integral Absolute Error (IAE) and 

Integral Time-weighted Absolute Error (ITAE), and are defined as: 

ISE=∫ eΩ
2𝑑𝑡

𝑇

0
 ; 

ISE=∫ |eΩ|𝑑𝑡
𝑇

0
, 

ISE=∫ 𝑡|eΩ|𝑑𝑡
𝑇

0
. 

Where  eΩ is the tracking errors for speed of DFIM.  

Table 2 gives a quantitative comparison between the proposed fuzzy logic and the IP technique in load 

variation[23] . 

 

Table 2: Performance error indexes comparison 
 

Controller 

 

Error indexes 

IAE ISE ITAE 

SMSO 6 237.556 296.912 

Fuzzy-SMSOC-GA 0.3273 0.0536 0.0803 

 

According to table 2 it is clearly shown that the proposed Fuzzy-SMSOC-GA controller has the smallest 

IAE, ISE and ITAE performance indexes with respect to SMSO controller. These results confirm the improved 

performance with the fuzzy-GA algorithm [23]. 

 

VIII.  CONCLUSION 
In this paper, a comparative study between the conventional DTC of the IM with SOSMC and DTC-

fuzzy-SOSMC, GA has been presented for a speed controller. From the simulation studies, hybrid controller 

produced better performances in terms of a fast rise time, a small overshoot, reduced torque and flux ripples. 

Therefore, very satisfactory performances have been achieved. Furthermore, the effectiveness of the proposed 

algorithms is evaluated and justified from performance indices IAE, ISE and ITSE. According to the yielded 

simulation results, one can conclude that this algorithm is suitable for applications requiring a high tracking 

accuracy in presence of external disturbances. 

 

IX. APPENDIX 
Table 3:  IM parameters [12] 

Rated  power 3KW 

Stator resistance Rs1= Rs2  1.2Ω  

Rotor resistance Rr 1.8Ω  

Stator inductance Ls 0.1564H  

Rotor inductance Lr 0.1564H  

Mutual  inductance Lm 0.15H  

Pole pairs P 2 

Machine inertia J    0.05 kg.m2  

Viscous friction coefficient fr 0.001 kg.m2/s  
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Table 4:   GA setup parameters. 
Descriptions Parameters 

Population size 40 

Maximum iteration 9 

Crossover probability 0.8 

Mutation probability 0.02 

Initial range [0 ; 1] 

 

Table 5:  Performance of SMSO controller. 
KS optimized KS =10.9387 

KT optimized KT=7.6184 

 

Table 6:  Performance of fuzzy -SMSO-GA controller. 
Controller FSOSMC-GA 

Input scaling factor optimized  KE KE= 0.6218 

Input scaling factor optimized KdE KDE= 1 

KS scaling factor optimized for the output  KS=2.2193 

KT scaling factor optimized for the output  KT=2.5698 
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